Agilent Technologies
E6501A/E6502A/E6503A VXI Receivers

Agilent Technologies

User’s Guide

Agilent Technologies

Part Number: E6500-90015
Printed in USA

February 2000

Notice

The information contained in this document is subject to change without
notice.

Agilent Technologies makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Agilent Technologies
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or
use of this material.

Agilent Technologies assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Agilent Technologies.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without prior
written consent of Agilent Technologtes.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 for DOD
agencies, and subparagraphs (c)(1) and (c)(2) of the Commercial Computer
Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Agilent Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403-1799, U.S.A.

© Copyright Agilent Technologies 2000

Windows NT® and Windows 95® are registered trademarks of Microsoft
Corporation.

UNIX® is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

ix E6501A/E6502A/E6503A VXI Receiver User's Guide

Certification

Warranty

Warranty

Agilent Technologies certifies that this product met its published
specifications at the time of shipment from the factory. Agilent Technologies
further certifies that its calibration measurements are traceable to the
United States National Institute of Standards and Technology (NIST,
formerly NBS), to the extent allowed by the Institute's calibration facility,
and to the calibration facilities of other International Standards
Organization members.

This Agilent Technologies system product is warranted against defects in
materials and workmanship for a period corresponding to the individual
warranty periods of its component products. Instruments are warranted for a
period of three years. During the warranty period, Agilent Technologies
will, at its option, either repair or replace products that prove to be defective.

Warranty service for products installed by Agilent Technologies and certain
other products designated by Agilent Technologies will be performed at
Buyer’s facility at no charge within Agilent Technologies service travel
areas. Outside Agilent Technologies service travel areas, warranty service
will be performed at Buyer’s facility only upon Agilent Technologies’s prior
agreement and Buyer shall pay Agilent Technologies’s round trip travel
expenses. In all other areas, products must be returned to a service facility
designated by Agilent Technologies.

For products returned to Agilent Technologies for warranty service, Buyer
shall prepay shipping charges to Agilent Technologies and Agilent
Technologies shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for
products returned to Agilent Technologies from another country.

Agilent Technologies warrants that its software and firmware designated by
Agilent Technologies for use with an instrument will execute its
programming instructions when properly installed on that instrument.
Agilent Technologies does not warrant that the operation of the instrument,
or software, or firmware will be uninterrupted or error free.

E6501A/E6502A/E6503A VXI Receiver User's Guide x

Assistance

LIMITATION OF WARRANTY. The foregoing warranty shall not apply
to defects resulting from improper or inadequate maintenance by Buyer,
Buyer-supplied software or interfacing, unauthorized modification or
misuse, operation outside of the environmental specifications for the
product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT
TECHNOLOGIES SPECIFICALLY DISCLAIMS THE IMPLIED
WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES. THE REMEDIES PROVIDED HEREIN ARE
BUYER’S SOLE AND EXCLUSIVE REMEDIES. AGILENT
TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY
OTHER LEGAL THEORY.

Product maintenance agreements and other customer assistance agreements
are available for Agilent Technologies products.

For assistance, call your local Agilent Technologies Sales and Service
Office (refer to “Service and Support” on page xii).

xi E6501A/E6502A/E6503A VXI Receiver User’s Guide

Service and Support

Any adjustment, maintenance, or repair of this product must be performed
by qualified personnel. Contact your customer engineer through your local
Agilent Technologies Service Center. You can find support information on
the web at http://www.tmo.hp.com/tmo/datasheets/English/index.html.

If you do not have access to the Internet, one of these Agilent Technologies
centers can direct you to your nearest Agilent Technologies representative:

United States:

Agilent Technologies

Test and Measurement Call Center
PO Box 4026

Englewood, CO 80155-4026

(800) 452 4844 (toll-free in US)

Canada:

Agilent Technologies Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario L4W 5G1
(905) 206 4725

Europe:

Agilent Technologies European Marketing Centre
Postbox 999

1180 AZ Amstelveen

The Netherlands

(31 20) 547 9900

Japan:

Latin America:

Agilent Technologies Ltd.
Measurement Assistance Center
9-1, Takakura-Cho, Hachioji-Shi
Tokyo 192, Japan

(81) 426 56 7832

(81) 426 56 7840 (FAX)
Agilent Technologies Latin American Region Headquarters
5200 Blue Lagoon Drive, Sth Floor

Miami, Florida 33126, U.S.A.

(305) 267 4245, (305) 267-4220

(305) 267 4288 (FAX)

Australia/New Zealand:

Asia-Pacific:

Agilent Technologies Australia Ltd.
31-41 Joseph Street

Blackburn, Victoria 3130

Australia

1 800 629 485 (Australia)

0800 738 378 (New Zealand)

(61 3) 9210 5489 (FAX)

Agilent Technologies Asia Pacific Ltd.
17-21/F Shell Tower, Times Square

1 Matheson Street, Causeway Bay
Hong Kong

(852) 2599 7777

(852) 2506 9285 (FAX)

E6501A/E6502A/E6503A VXI Receiver User’'s Guide Xii

WARNING

CAUTION

Instrument Markings

Safety and Regulatory Information

Review this product and related documentation to familiarize yourself with
safety markings and instructions before you operate the instrument. This
product has been designed and tested in accordance with international
standards.

The WARNING notice denotes a hazard. It calls attention to a
procedure, practice, or the like, that, if not correctly performed
or adhered to, could result in personal injury. Do not proceed
beyond a WARNING notice until the indicated conditions are
fully understood and met.

The CAUTION notice denotes a hazard. It calls attention to an operating
procedure, practice, or the like, which, if not correctly performed or adhered
to, could result in damage to the product or loss of important data. Do not
proceed beyond a CAUTION notice until the indicated conditions are fully
understood and met.

When you see this symbol on your instrument, you should refer to the instrument’s
instruction manual for important information.

E This symbol indicates hazardous voltages.
N

The laser radiation symbol is marked on products that have a laser output.

This symbol indicates that the instrument requires alternating current (ac) input.

The CE mark is a registered trademark of the European Community. If it is accompanied
by a year, it indicates the year the design was proven.

The CSA mark is a registered trademark of the Canadian Standards Association.

"
£/
@ =

1SM1-A This text indicates that the instrument is an Industrial Scientific and Medical Group 1
Class A product (CISPR 11, Clause 4).

I This symbol indicates that the power line switch is ON.

I This symbol indicates that the power line switch is OFF or in STANDBY position.

xiii E6501A/E6502A/E6503A VXI Receiver User’'s Guide

Safety Earth
Ground

Before Applying
Power

=4

This is a Safety Class | product (provided with a protective earthing
terminal). An uninterruptible safety earth ground must be provided from the
main power source to the product input wiring terminals, power cord, or
supplied power cord set. Whenever it is likely that the protection has been
impaired, the product must be made inoperative and secured against any
unintended operation.

Verify that the product is configured to match the available main power
source as described in the input power configuration instructions in this
manual. If this product is to be powered by autotransformer, make sure the
common terminal is connected to the neutral (grounded) side of the ac power

supply.

E6501A/E6502A/E6503A VXI Receiver User's Guide xiv

Italics

Instrument Display

[Keycap]

{Softkey}

User Entry

Path Name

Computer Display

Typeface Conventions

Used to emphasize important information:
Use this software only with the Agilent Technologies xxxxxX
system.

Used for the title of a publication:
Refer to the Agilent Technologies xxxxxX System-Level User's
Guide.

Used to indicate a variable:
Type LOAD BIN filename.

Used to show on-screen prompts and messages that you will see on the
display of an instrument:

The Agilent Technologies xxxxxX will display the message CALI
SAVED.

Used for labeled keys on the front panel of an instrument or on a
computer keyboard:
Press [Return].

Used for simulated keys that appear on an instrument display:
Press {Prior Menu}.

Used to indicate text that you will enter using the computer keyboard;
text shown in this typeface must be typed exactly as printed:
Type LOAD PARMFILE

Used for examples of programming code:
#endif // itndef NO_CLASS

Used for a subdirectory name or file path:
Edit the file usr/local/bin/sample. txt

Used to show messages, prompts, and window labels that appear on a
computer monitor:
The Edit Parameters window will appear on the screen.

Used for menus, lists, dialog boxes, and button boxes on a computer
monitor from which you make selections using the mouse or keyboard:
Double-click EXIT to quit the program.

xv E6501A/E6502A/E6503A VXI Receiver User’s Guide

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

What You’ll Find in This Manual...

® Product Description and Configurations

Chapter 1 introduces the receiver systems, shows the receiver options that
extend the standard functionality, describes how to inspect the receiver,
describes the front-panel features, illustrates standard receiver
configurations, and contains a list of the accessories supplied.

® Getting Started

Chapter 2 provides information about electrostatic discharge, how to set the
logical address switches of each module, how to install the modules into a
mainframe, describes the PC or UNIX workstation system requirements,
how to install the software, how to start the virtual front panel, and how to
check operation.

® Using the Receiver

Chapter 3 provides an overview of the receiver functionality, shows how to
use the driver software, and shows how to use the virtual front panel.

® Theory of Operation

Chapter 4 contains in-depth theory of operation including analog gain,
autoranging, and dynamic range optimization.

® Specifications

Chapter 5 contains the receiver specifications.

® Command Reference

Chapter 6 provides a listing of all driver software commands used to control
the receiver operation.

E6501A/E6502A/E6503A VXI Receiver User's Guide xvi

Contents

Contents
CONtENS et e e e Contentsi
N OO . ot ix
Restricted RightsLegend ix
Warranty X
Certification X
WAITANLY . . .o e e X
ASSISTANCE . .. oo xi
Service and SUpport Xii
Safety and Regulatory Information Xiii
Safety Earth Ground xiv
Before Applying Power i Xiv
Typeface Conventionsiuiiinniinaan.. XV
What You’ll Find in This Manual... XVi

Product Description and Configurations
Introducing the E6501A/E6502A/E6503A

VXTI RECEIVErS ..o e 1-2
E6501A VXIReceiver 1-2
E6502A VXI Receiver i 1-2
E6503A VXI Receiver i 1-3
Receiver Optionso it 1-4
Initial Inspection 1-5
Front-Panel Features 1-6
Standard Receiver Configurations 1-22
E650XA Mainframe Options 1-22
Accessories Supplied 1-29
Getting Started
Electrostatic Discharge Information 2-2
Preparation for Use 2-4
Procedure 2-5
Local Bus Compatibility 2-8
Installing the Receiver 2-9
Cabling the Receiver 2-10
10 MHz Reference 2-10
Installing the MXI Controller Cable 2-10
Configuring a Multiple Mainframe System 2-10
PC or UNIX Workstation System Requirements 2-13
Installing the Software 2-14
Configuring the VXI Bus Timeout. 2-14
Starting the Virtual Front Panel 2-15
Checking Operation i, 2-19
Procedure 2-19

E6501A/E6502A/E6503A VXI Receiver User's Guide Contents-i

Contents

Contents-ii

Using the Receiver

E650XA VXI Receiver Overview 3-2
Core Receiver Capabilities o L. 3-2
MonitorMode 3-2
SearchModeo 3-4
Multiple Demodulations L 3-5
Digital IF (DDC) Bandwidths 3-6
Gain Control and Dynamic Range Optimization 3-7
AnalogOutputs 3-7
Digital OQutputs 3-9
Receiver Capabilities By Configuration 3-11
Using the Virtual Front Panel 3-12
File Menu 3-12
Settings Menu 3-12
General Setup DialogBox 3-13
Layout Menu 3-14
Mezzanine Menu 3-14
OpenMenu 3-16
New Spectral Display 3-16
Shortcut Menu in Spectral Display 3-17

I6 MHz Stare 3-18
Mezz. 1 Controls 3-18
AudioControls (Mezz 1) 3-20
RSSI for Mezzanine 1, 3-20
Search Controls for Mezzanine 1 3-20
Search Display for Mezzanine 1........................ 3-22

IF Channel Controls, 3-22
Tuner Controls 3-23
BFO Control 3-24
Window Menu 3-24
Using the Driver Software 3-25
Programmer’s Block Diagrams 3-25
Mezzanine Data Select Modes 3-25
Command Group Numbers 3-25
Maximum FFT Length, 3-26
Maximum Number of FFT Processes 3-26
DSP Considerations 0. 3-27
Serial Loading 3-27
DSP Loading i 3-27
Driver Revision 3-28
Default Receiver Settings 3-28
Opening and Closing an Instrument Session 3-28
Return Values 3-31
Pointers to Memory Addresses L. 3-31
Receiver Programming Examples 3-31
To set up a search processcoouiuino. .. 3-31
Tosetup an FFT measurement 3-33

E6501A/E6502A/E6503A VXI Receiver User’s Guide

Contents

To change tuner frequency 3-34
To change the IF bandpass filter setting 3-34
Tosetthe IFgain 3-35
To set tuner input attenuation 3-36
To set search mode resolution bandwidth 3-36
To set span in monitormode 3-36
To set mezzanine data selectmode 3-37
To turn the tuner 10 MHz reference off 3-37
To turn the IF processor 10 MHz referenceon 3-37
To activate automatic frequency control 3-38
To lock autoranging 3-38
To set up dynamic range optimization. 3-38
To set up a channelized power measurement 3-39
To set up and start a monitor process 3-40
To set up demodulation, turn on an audio channel, and set squelch .
3-41
Multi-Threading Considerations 3-42
Synchronizing Multiple IF Processors and Capturing Data 3-46
Hardware Configuration oo, 3-46
Software Configuration 3-47
Software Trigger i 3-47
Hardware Trigger 3-47
Distributing Clocks 3-48
Synchronizingthe DDCs 3-48
Armingthe DSP 3-49
Locking Autorange 3-50
Captured Data Format 3-50
Sending Indefinite Samples L. 3-56
Data Collection Programming Examples 3-57
DMA Block Size Considerations 3-59
Common Functions for Collection 3-60
Scenario 1: Capture N Samples of Digital 1/Q Data Across VXI Bus
3-63
Scenario 2: Capture N Samples of Digital 1/Q Data From VXI Bus
Usinga Trigger i 3-68
Scenario 3: Capture Digital I/Q Data Indefinitely Across VXI Bus .
3-75
Scenario 4: Capture Digital 1/Q Data Indefinitely From VXI Bus
UsingaTrigger i 3-81
Scenario 5: Stream Digital 1/Q Data Indefinitely to the Link Port
UsingaTrigger i 3-88
Scenario 6: Stream Digital 1/Q Data Indefinitely to the Link Port . .
3-94
Scenario 7: Stream N Samples of Digital I/Q Data to the Link Port .
3-99
Scenario 8: Stream N Samples of Digital 1/Q Data to the Link Port
Using Multiple Triggers 3-103

E6501A/E6502A/E6503A VXI Receiver User’s Guide Contents-iii

Contents

Scenario9:Stream N Samplesofl/QDatatotheLink PortUsingaTrigger
3-109

Scenario 10: Stream ADC Data Indefinitely to the Link Port 3-115

Scenario 11: Stream N Samples of ADC Data to the Link Port

3-120
Scenario 12: Stream N Samples of ADC Data to the Link Port Using
aSingle Trigger 3-124
Scenario 13: Stream N Samples of ADC Data to the Link Port Using
Multiple Triggers i 3-129
Scenario 14: Capture N Samples of Full Rate ADC Data Across the
VXIBUS . 3-134
Scenario 15: Capture N Samples of ADC Data From VXI Bus Using
aTrigger 3-139

4. Theory of Operation

E6501A/E6502A/E6503A VXI Receiver Description 4-2
E6401A 20 to 1000 MHz Downconverter Operation 4-4
Functions 4-4
Description 4-4
Inputs and Outputs i 4-5
E640TA . 4-5
E6402A Local Oscillator Operation 4-6
Functions 4-6
DesCription 4-6
2nd Local Oscillator 4-6
10 MHz Reference L. 4-6
First Local Oscillator 4-7
E6402A Option 002 Module L. 4-7
Inputs and Outputs 4-8
E6402A . . 4-8
E6402A Option 002 4-8
E6403A 1000 to 3000 MHz Block Downconverter Operation 4-9
Functions 4-9
Description 4-9
Inputs and Outputs i 4-10
E6404A IF Processor Operation 4-11
Functions 4-11
Description 4-11
Mezzanine Board Description 4-11
Overview of Automatic Gain Control (AGC) 4-13
Autoranging Operation 4-13
Autoranging Benefits L 4-14
Autoranging Routine Attack and Decay Time 4-14
30 kHz and 700 kHz Analog Filters 4-14
ProcessingGain i 4-15
Dynamic Range Optimization 4-15
Dynamic Range Optimization Attack and Decay Time 4-16

Contents-iv. E6501A/E6502A/E6503A VXI Receiver User’s Guide

Contents

Interrelationship Between Autoranging, DRO,

Correction RAM, and DSP 4-16
Dynamic Range Optimization in Search Mode 4-17
FFT-Based Measurements, 4-18
FFT Background 4-18
FET Properties 4-18
FFT Processo 4-19
Stepped FFT Measurements 4-19
WIndowingo 4-20
Purpose for Windowing L 4-20
Window Implementation 4-20
Window Characteristics 4-21
Window as Resolution Bandwidth Filter. 4-21
FFT Resolution Bandwidth Range (Search Mode) 4-21
FFT Resolution Bandwidths <5 kHz (Search Mode) 4-22
FFT Resolution Bandwidths for DDC IF Pan Windows 4-22
Improved Sensitivity Using FFTs 4-22
Inputsand Qutputs 4-23
Specifications
Frequency-Related Specifications 5-2
Amplitude-Related Specifications 5-4
IF (Intermediate Frequency) Processing 5-7
Physical Characteristics 5-14
General Information 5-17
Environmental Information. oL 5-19
VXI Information 5-20
Regulatory Information i 5-21

Programming Command Reference

OVEIVIEW . . 6-2
Driver Architecture 6-3
Capability Classes i 6-3

Measure Capability Class Functions 6-4
Route Class Functions 6-5
Application Functions 6-5

Return Values 6-6
Special Values 6-9

Command Listso 6-10
Pointers to Memory Addresses 6-10

E6501A/E6502A/E6503A VXI Receiver User’'s Guide Contents-v

Product Description and Configurations

In This Chapter

® Introducing the E6501A, E6502A, E6503A VXI Receivers
® Receiver Options

® Initial Inspection

® Front-Panel Features

® Standard Receiver Configurations

® Accessories Supplied

E6501A/E6502A/E6503A VXI Receiver User’'s Guide

1-1

Product Description and Configurations
Introducing the E6501A/E6502A/E6503A VXI Receivers

NOTE

E6501A VXI Receiver

E6502A VXI Receiver

Introducing the E6501A/E6502A/E6503A
VXI Receivers

Each standard E6501A/E6502A/E6503A VXI receiver is a combination of
E6500A VXI tuner modules and an E6404A IF processor module. The
modules comprising each receiver model are listed below.

Refer to Figure 4-3 for a block diagram showing the mezzanine board,
digital downconverters (DDCs), and digital signal processor (DSP).

The E6501A X VI receiver consists of:

One E6401A 20-1000 MHz downconverter module
One E6402A local oscillator module
One E6403A 1000-3000 MHz block downconverter (optional)
One E6404A IF processor module contains:
One IF channel

One mezzanine with a digital downconverter and a
digital signal processor

The E6502A X VI receiver consists of:

Two E6401A 201000 MHz downconverter modules
Two E6402A local oscillator modules
Two E6403A 1000-3000 MHz block downconverters
(optional)
One E6404A IF processor module contains:

Two IF channels (Option 040)

Two mezzanines, each with a digital downconverter and
a digital signal processor (Option 031)

1-2 E6501A/E6502A/E6503A VXI Receiver User's Guide

Product Description and Configurations
Introducing the E6501A/E6502A/E6503A VXI Receivers

E6503A VXI Receiver The E6503A XVI receiver consists of:

Two E6401A 20-1000 MHz downconverter modules

One E6402A Option 002 dual channel local oscillator module
Two E6403A 1000-3000 MHz block downconverters
(optional)

One E6404A IF processor module contains:

Two IF channels (Option 040)

One mezzanine with two digital downconverters and a
digital signal processor (Option 022)

The E650XA VXI Series receivers, consisting of three to seven C-size
modules, are implemented in the VXI platform to provide the flexibility
needed to address different system requirements. Agilent Technologies
supplies the hardware and the driver software. A simple virtual front panel
program (no source code is provided) is also supplied for Windows NT®and
Windows 95%. This program can be used to demonstrate some of the
receiver’s capabilities, and also be used to verify equipment operation.

The E650XA Series receivers can be used for signal searching, signal
collection (demodulation of AM, FM, USB, LSB, ISB, PM, and CW
signals), and direction finding applications using multiple channels for
signals of interest.

The E6500A tuner provides high dynamic range downconversion to a fixed
bandwidth, 21.4 MHz intermediate frequency (IF) output. The input
frequency range of 20 to 1000 MHz can be extended to 3000 MHz by
adding an E6403A 1000-3000 MHz block downconverter module

(Option 003).

The E6404A IF processor (IFP) module digitizes the IF output of the tuner,
provides analog filtering and gain control, performs analog-to-digital
conversion (ADC), digital filtering, digital signal processing, demodulation
and fast Fourier transforms (FFTs), and digital-to-analog audio outputs.
Also, digital data outputs provide 1/Q data from the digital down converters
(DDCs) and raw A/D data.

Controlling the receivers requires an MXI controller card in slot zero of the
VXI mainframe, and software. Driver software for Windows NT* and
Windows 95" is included with this product, enabling the user to control the
receiver with high-level commands. Also required is the HP I/O Libraries
(VXI plug and play drivers). Note that the driver software must be converted
for use on a UNIX workstation. Driver source code is included for this
purpose.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-3

Product Description and Configurations
Receiver Options

Table 1-1

Receiver Options

Table 1-1 shows options that add functionality to the standard receivers.

E65014/E6502A/E6503A Receiver Options

Option Description E6501A"" E6502A12 E6503A1314
003 Increases frequency coverage to x x' x!

006 Adds a 6 slot E1421B VXi X X X

__ mainframe? o
013 Adds a 13 slot E1401B VXI X X X

___ mainframe? e o
022 Adds 1 DDC%“ to mezzanine #1 x X

025 Adds 4 DDCs3* to mezzanine #1 x X x°

026 Adds 4 MBytes RAM® to X X X

_ mezzanine#1 . _. e e e
031 Adds a second mezzanine’® X X

032 Adds 1 DDC? to mezzanine #2 X X X

035 Adds 4 DDCs® to mezzanine #2 x X X

036 Adds a second mezzanine and X X X

_ AMBytesRAM' o e
0B1 Adds extra user’s guide X X X

1. Adds two E6403A 3 GHz block downconverter VXI modules to the receiver.
2. Receiver specifications are guaranteed only in VXI mainframes.

3. Digital downconverters are used for digital filtering and for channelization of multiple signats for
demodulation by the DSP.

4. Option 022 and 025 may not be ordered together. Choose one or the other. A maximum quantity of ONE
of these options is allowed.

5. EB6503A Option 025 adds three DDCs to mezzanine #1 (not four), since two reside on the standard
configuration.

6. 4 MB of static RAM useful for capture and delay data memory applications. May be ordered with Option
022 or 025 (choose one), if desired.

7. Second mezzanine includes one DDC and one DSP. EB502A includes the second mezzanine in its
standard configuration.

8. Option 031 and 036 may not be ordered together. Choose only one.

9. Option 032 and 035 MUST be ordered with either Option 031 or 036 (choose one). Option 031 or 036 are
necessary to provide the second mezzanine on which the Option 032 or 035 DDCs must reside. Option
032 and 035 may not be ordered together. Choose one or the other. A maximum quantity of ONE of these
options (032 or 035) is allowed.

10. 4 MB of static RAM useful for capture and delay data memory applications. Option 036 may not be
ordered with the E6501A Option 031 or E6503A Option 031. Choose only one. Since the E6502A
includes a second mezzanine, the E6502A Option 036 simply adds 4 MB of RAM.

11. E6501A allows a second mezzanine to be added (Option 031) but not a second IF channel since only one
tuner front-end is included.

12. Includes EB404A IF processor with module Options 031 (mezzanine #2) and 040 (IF Ch. 2)
13. Includes E6404A iF processor with module Options 022 (DDC #2) and 040 (IF Ch. 2).

14. To configure more than two RF channels, call your Agilent Technologies sales representative for
available custom configurations.

1-4 E6501A/E6502A/E6503A VXI Receiver User’'s Guide

Product Description and Configurations
Initial inspection

Initial Inspection

Inspect the shipping container for damage. If the shipping container or
cushioning material is damaged, keep it until you have verified that the
contents are complete and you have tested the module(s) mechanically and
electrically.

Table 1-2 through Table 1-9 contain a listing of the accessories shipped with
each module. If the contents are incomplete or if the modules do not pass the
“Checking Operation” procedure found at the end of Chapter 2, notify the
nearest Agilent Technologies Service and Support office. A listing of
Agilent Technologies Service and Support offices is located at the front of
this manual. If the shipping container is damaged or the cushioning material
shows signs of stress, also notify the carrier. Keep the shipping materials for
inspection by the carrier. The Agilent Technologies office will arrange for
repair or replacement without waiting for a claim settlement.

If the shipping materials are in good condition, retain them for possible
future use. You may wish to ship the module(s) to another location or return
it to Agilent Technologies for service.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-5

Product Description and Configurations
Front-Panel Features

Front-Panel Features

In this section, the front-panel features will be described for each of the
modules used to create the three standard receiver configurations described
in this manual. Each of the three configurations are comprised of three to
seven modules. An illustration of each receiver system including module
position is included. The modules are:

E6401A 20-1000 MHz downconverter

E6402A local oscillator

E6402A Option 002 local oscillator with dual LO outputs
E6403A 1000-3000 MHz block downconverter

E6404A IF processor

E6404A Option 031 (mezzanine #2) and Option 040 (IF Ch. #2)
IF processor

E6404A Option 022 (DDC #2 on mezzanine #1) and Option 040
(IF Ch. #2) IF processor

1-6 E6501A/E6502A/E6503A VXI Receiver User’s Guide

E6401A 20-1000 MHz
Downconverter

Access

21.4 MHz IF Output

2nd LO Input

1st LO Input

Block Downconv Input

20-1000 MHz Input

Product Description and Configurations
Front-Panel Features

LED flashes whenever the module is being accessed via the VXI
backplane.

is the tuner output signal port that connects to the E6404A IF In port.

port connects to the E6402A 2nd LO Output port. The signal frequency
is approximately 1200 MHz.

port connects to the E6402A 1st LO Output port. The signal frequency
ranges from approximately 1241.4 to 2221.4 MHz.

port connects to the E6403A Block Downconv Output port that ranges,
in bands, from approximately 250 to 900 MHz (used for Option 003
configuration).

is the receiver input port. When using an Option 003 configuration to
extend the frequency coverage range to 3 GHz, this port is connected to
the E6403A 20-1000 MHz Output port.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-7

Product Description and Configurations
Front-Panel Features

20-1000 MHz
DOWN
CONVERTER

ceess()

21.4 MHz
IF Qutput

2nd LO Input
|

)
15t LO Input

Block
Downconv
Input

i = 5y

20-1000 MHz
Inpu

&

[Acaution:!
+20 oBm M |
= |

Al inputs” |

_ F6401A |

=)

Figure I-1 E6401A4 20-1000 MHz Downconverter Module

1-8 E6501A/E6502A/E6503A VXI Receiver User’s Guide

E6402A Local
Oscillator

Access

Unlock

Ref TTL Out

Ext Ref In

Ref Out

3rd LO Out

BD LO Output

2nd LO Output

1st LO Output

Product Description and Configurations
Front-Panel Features

LED flashes whenever the module is being accessed via the VXI
backplane.

LED lights when the 1st LO or 2nd LO is unlocked.

is the reference 10 MHz TTL-level output signal that connects to a slot 0
MXI controller. The TTL output provides a common reference for the
VXI backplane. This allows the 10 MHz reference on the VXI
backplane to be locked to the receiver reference.

is an input port for an external reference 10 MHz signal.

provides a reference 10 MHz output signal. This port typically connects
to the E6404A IF processor Ref In port. This ensures the ADC sample
clock is locked to the system reference.

is typically used for a tuner system that requires conversion to baseband
frequencies.

-provides a 1200 MHz (approximately) signal to the E6403A BD LO

Input port (when the E6403A Option 003 is present).

port provides a 1200 MHz (approximately) signal that connects to the
E6401A 2nd LO Input port.

port provides a 1241.4 to 2221.4 MHz (approximately) signal that
connects to the E6401A 1st LO Input port.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-9

Product Description and Configurations
Front-Panel Features

LOCAL
OSCILLATOR

ccessi i

fock

=,
e (12
~ BDLO Qutpul ~

A r
~2nd LO Outputy
I

S 7
~ 151LO Output ~

+20VDC Mar
All Inputs

E6402A

350
bus

)

AELI2A

Figure 1-2 E6402A Local Oscillator Module

1-10 E6501A/E6502A/E6503A VXI Receiver User's Guide

E6402A Option 002
Local Oscillator with
Dual OQutputs

Access

Unlock

Ref TTL Out

Ext Ref In

Ref Qut

3rd LO Out

BD LO Output

2nd LO Output

1st LO Output

Product Description and Configurations
Front-Panel Features

LED flashes whenever the module is being accessed via the VXI
backplane.

LED lights when the st LO or 2nd LO is unlocked.

is the reference 10 MHz TTL-level output signal that connects to a slot 0
MXI controller. The TTL output provides a common reference for the
VXI backplane. This allows the 10 MHz reference on the VXI
backplane to be locked to the receiver reference.

is an input port for an external reference 10 MHz signal.

provides a reference 10 MHz output signal. This port typically connects
to the E6404A IF processor Ref In port. This ensures the ADC sample
clock is locked to the system reference.

is typically used for a tuner system that requires conversion to baseband
frequencies.

ports (2) each provide a 1200 MHz (approximately) signal to the
E6403A BD LO Input port (when the E6403 A Option 003 is present).

ports (2) each provide a 1200 MHz (approximately) signal that connects
to the E6401A 2nd LO Input port.

ports (2) each provide a 1241.4 to 2221.4 MHz (approximately) signal
that connects to the E6401A 1st LO Input port.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-11

Product Description and Configurations
Front-Panel Features

LOCAL
OSCILLATOR
ccessi_

nlock .

7
~2nd LO Outputs

¢ r((' W

. 4
~ 1stLO Output ~

+20 M Mo
+20VDC Max
All Inputs

]KCAUHONW

E6402A

HAC2002

Figure 1-3 E6402A Option 002 Local Oscillator with Dual Outputs Module

1-12 E6501A/E6502A/E6503A VXI Receiver User's Guide

E6403A
1000-3000 MHz Block
Downconverter

Access

BD LO Input

Block Downconv Qutput

20-1000 MHz Output

20-3000 MHz Input

Product Description and Configurations
Front-Panel Features

LED flashes whenever the module is being accessed via the VXI
backplane.

port connects to the E6402A BD LO Output port. This signal is
approximately 1200 MHz.

port connects to the E6401A Block Downconv Input port that ranges, in
bands, from approximately 250 to 900 MHz.

port connects to the E6401A 20-1000 MHz Input port.

is the receiver input port when using an Option 003 configuration to
extend the frequency coverage range to 3 GHz.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-13

Product Description and Configurations
Front-Panel Features

20-1000 MHz
Output
e

20-3000 MHz
Input

/E\
©

CAUTION:
+20 BM Mok

20 VDCM
All Inputs

|HP E6403A

B4BA

Figure 1-4 E6403A4 1000-3000 MHz Block Downconverter Module

1-14 E6501A/E6502A/E6503A VXI Receiver User's Guide

E6404A IF Processor

Access

Ch1IF In

Ref In

Link Port 1
Link Port 2

Audio/Trigger

Ref Out

Product Description and Configurations
Front-Panel Features

LED flashes whenever the module is being accessed via the VXI
backplane.

is the IF input port that connects to the 21.4 MHz IF Output port of the
E6401A 20-1000 MHz downconverter.

port connects to the E6402A Ref Out port.

are the digital data output ports that are capable of providing 1/Q data
from the DDCs and raw A/D data. The data in each link port is sampled
at 28.5333 MSa/s. Raw A/D data requires both link ports.

The eight pin connector provides six signals plus two grounds (4 bits of
data + clock + ack => 6 signals).

is the analog audio output port. The standard E6404A IF processor used
in the E6501A receiver is capable of one audio output signal. By
installing Option 025, the E6404A IF processor is capable of five audio
output signals. The audio output also has driver selectable FM
de-empbhasis.

This port also provides trigger input or output. Trigger input is utilized

to initiate data output flow. Trigger output is currently not used. The

trigger can be an active low or active high.

The trigger output is a 50 ohm output. The trigger input is a Schmitt
trigger input with a minimum pulse width of 105 ns.

The trigger input allows you to trigger multiple IF processors in a
mainframe simultaneously by using a single trigger signal input to the
master IF processor. This signal is buffered into the VXI backplane and
distributed to all slave IF processors. This function is useful for
triggering synchronous data collection, or synchronous operation of the
DDCs.

port provides a 10 MHz reference output signal.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-15

Product Description and Configurations
Front-Panel Features

IF
PROCESSOR
(Bcornsy
on 1y Fin Anolog
”/71/' It in Q_]A_MH_Z_> IF Anoiog
Filter |Gain

ADC

[][]

boC

Ol
m,_
©

Z S04 X

O,

{ suUMPZZO N

186BufoIpNY

() 7ot o)

Figure 1-5 [E6404A IF Processor Module

E6404A IF Processor

1-16 E6501A/E6502A/E6503A VXI Receiver User’s Guide

E6404A Option 031,
040 IF Processor

Access

Ch1IF In

Ref In

Link Port 1
Link Port 2
(IF Channel 1)

Audio/Trigger
(IF Channel 1)

Product Description and Configurations
Front-Panel Features

LED flashes whenever the module is being accessed via the VXI
backplane.

is the channel 1 IF input port that connects to the 21.4 MHz IF Output
port of one of the E6401A 20-1000 MHz downconverters.

port connects to the E6402A Ref Out port.

are the digital data output ports that are capable of providing I/Q data
from the DDCs and raw A/D data. The data in each link port is sampled
at 28.5333 MSa/s. Raw A/D data requires both link ports.

The eight pin connector provides six signals plus two grounds (4 bits of
data + clock + ack => 6 signals).

is the analog audio output port. The E6404A Option 031 and Option 040
[F processor used in the E6502A receiver is capable of one audio output
signal for IF Channel 1 and one audio output signal for IF Channel 2. By
installing Option 025, the E6404A IF processor is capable of five audio
output signals for channel 1. The audio output also has driver selectable

FM de-emphasis.

This port also provides trigger input or output. Trigger input is utilized
to initiate data output flow. Trigger output is currently not used. The
trigger can be an active low or active high.

The trigger output is a 50 ohm output. The trigger input is a Schmitt
trigger input with a minimum pulse width of 105 ns.

The trigger input allows you to trigger multiple IF processors in a
mainframe simultaneously by using a single trigger signal input to the
master [F processor. This signal is buffered into the VXI backplane and
distributed to all slave IF processors. This function is useful for
triggering synchronous data collection, or synchronous operation of the
DDCs.

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-17

Link Port 1
Link Port 2
(IF Channel 2)

Audio/Trigger
(IF Channel 2)

Ref Out

Ch2IF In

Product Description and Configurations
Front-Panel Features

are the digital data output ports that are capable of providing [/Q data
from the DDCs and raw A/D data. The data in each link port is sampled
at 28.5333 MSa/s. Raw A/D data requires both link ports.

The eight pin connector provides six signals plus two grounds (4 bits of
data + clock + ack => 6 signals).

is the analog audio output port. The E6404A Option 031 and Option 040
IF processor used in the E6502A receiver is capable of one audio output
signal for IF Channel 1 and one audio output signal for IF Channel 2. By
installing Option 035, the E6404 A IF processor is capable of five audio
output signals for channel 2. The audio output also has driver selectable
FM de-emphasis.

This port also provides trigger input or output. Trigger input is utilized
to initiate data output flow. Trigger output is currently not used. The
trigger can be an active low or active high.

The trigger output is a 50 ohm output. The trigger input is a Schmitt
trigger input with a minimum pulse width of 105 ns.

The trigger input allows you to trigger multiple [F processors in a
mainframe simultaneously by using a single trigger signal input to the
master IF processor. This signal is buffered into the VXI backplane and
distributed to all slave IF processors. This function is useful for
triggering synchronous data collection, or synchronous operation of the
DDCs.

port provides a 10 MHz reference output signal.

is the channel 2 IF input port that connects to the 21.4 MHz IF Output
port of one of the E6401A 20-1000 MHz downconverters.

1-18 E6501A/E6502A/E6503A VXI Receiver User's Guide

Product Description and Configurations
Front-Panel Features

{0

gROCgSSOR
T Acqers

CrE) RN AﬂO‘Og l:l
i e 21AMAz ot |Andloglapc |DDC

Fiter |Gain

Anclog []

21aMHz o L Andloglapc [DDC
Fiter |Gain

-
-

J
OO

d Yutl

(BUNIDIZOW

E6404A IF Processor
with Options 031 and 040

1abBfoIpNY

¢}

s10d Ul

(@]

zeuupzZEW

066U OIPY

2 Ret oy

cn2{g) Fin

] E6404A

=3
bus

)

454041314

Figure 1-6 E6404A Option 031, 040 IF Processor Module

E6501A/E6502A/E6503A VX! Receiver User's Guide 1-19

Product Description and Configurations
Front-Panel Features

E6404A Option 022,
040 IF Processor

Access LED flashes whenever the module is being accessed via the VXI
backplane.
Ch1IF In is the channel 1 IF input port that connects to the 21.4 MHz IF Output

port of one of the E6401A 20-1000 MHz downconverters.

Ref In port connects to the E6402A Ref Out port.
Link Port 1 are the digital data output ports that are capable of providing 1/Q data
Link Port 2 from the DDCs and raw A/D data. The data in each link port is sampled
(IF Channel 1) at 28.5333 MSa/s. Raw A/D data requires both link ports.

The eight pin connector provides six signals plus two grounds (4 bits of
data + clock + ack => 6 signals).

Audio/Trigger is the analog audio output port. The E6404A Option 022 and Option 040

(IF Channel 1) IF processor used in the E6503A receiver is capable of two audio output
signals for IF Channel 1. By installing Option 025, the E6404A IF
processor is capable of five audio output signals. The audio output also
has driver selectable FM de-emphasis.

This port also provides trigger input or output. Trigger input is utilized
to initiate data output flow. Trigger output is currently not used. The
trigger can be an active low or active high.

The trigger output is a 50 ohm output. The trigger input is a Schmitt
trigger input with a minimum pulse width of 105 ns.

The trigger input allows you to trigger multiple IF processors in a
mainframe simultaneously by using a single trigger signal input to the
master IF processor. This signal is buffered into the VXI backplane and
distributed to all slave IF processors. This function is useful for
triggering synchronous data collection, or synchronous operation of the

DDCs.
Ref Out port provides a 10 MHz reference output signal.
Ch2IF In is the channel 2 IF input port that connects to the 21.4 MHz IF Output

port of one of the E6401A 20-1000 MHz downconverters.

1-20 E6501A/E6502A/E6503A VXI Receiver User's Guide

Product Description and Configurations
Front-Panel Features

a

IF
PROCESSOR
1 Acces:

oh w\i}) xS . Anolog D
B verin 21AMHz o L Andlog|ADC |DDC

. Fiter {Gain D

bDC

(0]
T

§ - Analog
|§I o 21.4 MHz - 15 Anclog|ADC
ks Fiter 1Gain

| BUMDZZOW

E6404A IF Processor
with Opfions 022 and 040

18BBuoIPNY

(23 Ret O

Cn 34 Fin
| E6404A

bus

)

44042224

Figure 1-7 E6404A Option 022, 040 IF Processor Module

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-21

Product Description and Configurations
Standard Receiver Configurations

E650XA Mainframe
Options

Note

Standard Receiver Configurations

In this section, a front-panel illustration and brief description is given for
each of the three standard receivers described in this manual. Each
front-panel illustration depicts module position and receiver cabling
configuration.

® E650XA Option 006 (6 slot mainframe)
® E650XA Option 013 (13 slot mainframe)

® Systems are not shipped cabled. To account for the large number of
potential receiver configurations, it is possible to have extra cables when
finished configuring your system.

® E6500A mainframe Options 006 and 013 may be used with any of the
standard receiver configurations. Note that the E6502A Option 003
configuration must use the Option 013 mainframe because it requires
seven slots.

1-22 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Product Description and Configurations
Standard Receiver Configurations

E6501A Configuration The E6501A receiver consists of three single-slot C-size VXI modules:

E6402A local oscillator
E6401A 20-1000 MHz downconverter
¢ E6404A IF processor

If you are upgrading from an E6500A VXI tuner to a receiver configuration,
and you wish to use the Ref TTL Out signal and connect it to the EXT CLK
connector on the MXI controller card, note the following:

® You must have an E6402A LO module with a serial prefix number of
3822 or greater.

® You must set up the MXI controller card to use an external clock signal.
Factory Set
Logical IAddress

41 42 43

oy =] [
e

8120-5014
LOCAL 20:1000MHz [[on /
OSCILLATOR DOWN
CONVERTER n

p— | —8120-5015

to Slot riock (-
0 Controller 3
(optional)

{ suupzrOW

[

8120-6936

~ 4
#2d LO Output~,

1N
ACAUTON: FCAUHW |
v 0 A N
petiiites [-
_alinputs | | | Allinputs ‘ [T
| esa02a E64D1A E6404A
2 d ¢ ¢

i] |

Sl st

Figure 1-8 E6501A Receiver Configuration

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-23

E6501 A Option 003
Configuration

to Slot
0 Controller
(optional)

8120-6936

Product Description and Configurations
Standard Receiver Configurations

The E6501A Option 003 receiver consists of four single-slot C-size VXI
modules:

® E6402A local oscillator

® E6401A 20-1000 MHz downconverter

® E6403A 1000-3000 MHz block downconverter
® E6404A IF processor

If you are upgrading from an E6500A VXI tuner to a receiver configuration,
and you wish to use the Ref TTL Out signal and connect it to the EXT CLK
connector on the MXI controller card, note the following:

¢ You must have an E6402A LO module with a serial prefix number of

3822 or greater.
® You must set up the MXI controller card to use an external clock signal.

Factory Set
Logical Address

|
| | l |

41 42 40 43
7 L 7 L [|-l L} E
{ 1
i oyr g
1 g’*°°f“?§ 8120-5014
| D) Accesy -
’{‘ LOCAL 20-1000 MHz | |1000-3000 MH, /
QOSCILLATOR E%mmw aCLch\ngg;m 8120-5015
Access’) Access() ceessi L B

2 A

“Tspod Uiy~

[E6400-20075

: =
H o
N
Py 2
» A2 |3
c B8 -
8 |38
o |38
i
|2 |88
T\'\‘

B

Semirigid
| E6400-20074 | Cables

[Acaunon: | i TAcaution:| | |[AcAuTON:

s [mrn) | e

Allinputs _Allinputs | i‘ Allinputs_| 5 Rot

|
|
E6402A fE6401A] E6403A E6404A |
bus bus bus bug
@) [(] Ty LR ops

Figure 1-9 E6501A Option 003 Receiver Configuration

1-24 EB501A/E6502A/E6503A VXI Receiver User's Guide

Product Description and Configurations
Standard Receiver Configurations

E6502A Configuration The E6502A dual channel receiver consists of five single-slot C-size VXI
modules:

E6402A local oscillator (2)
E6401A 20-1000 MHz downconverter (2)

® E6404A IF processor with Option 031 (mezzanine #2) and Option 040
(IF channel #2)

If you are upgrading from an E6500A VXI tuner to a receiver configuration,
and you wish to use the Ref TTL Out signal and connect it to the EXT CLK
connector on the MXI controller card, note the following:

® You must have an E6402A LO module with a serial prefix number of

3822 or greater.
® You must set up the MXI controller card to use an external clock signal.

Factory Set
Logical lAddress

| | | l |

41 42 46
L I. [L Lw} |-l
I (‘
L
- LocaL 20.1000mez | |tocat 8120-5105
OSCILLATOR DOWN OSCILLATOR
CONVERTER
ccess lAccess Cccess
inlock lock ()
to Siot o i
0 Controller 21.4 MHz 21.4 MHz
i | IF Quiput t iF Output
e |z
(optional) i 3
Ref]
2
Ref 3
ATe] = -
ELE IR (@ 3 G oy
cowoouput~] M |00 0umuy 8120-5107
8120-6936 .
— V)
> T
N == pl ~ =,
aqd fout, con 2nd LO Output~
ut
)
i
v = JF 28000 MHz
£~ 19110 Output Input
ACAUTION: (ACAUTION: “AcAUTON:: AcauTion:
| +20 %1 MR +2C R MG ERU Uk ‘ +20 B M
420 DO R V20V LD M 20 Wb 3 20 ¢ a2 WA
i AilInputs | L_AllInputs All Inputs All inputs |
E6402A E6401A ~ EéngA_ E6401A E6404A
bus ! bus ~ T bus bus
£ I o] i s

Figure 1-10 E6502A Dual Channel Receiver Configuration (independent LOs)

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-25

E6502A Option 003

Product Description and Configurations
Standard Receiver Configurations

The E6502A Option 003 dual channel receiver consists of seven single-slot
C-size VXI modules:

Configuration
® E6402A local oscillator (2)
® E6401A 20-1000 MHz downconverter (2)
® E6403A 1000-3000 MHz block downconverter (2)
® E6404A IF processor with Option 031 (mezzanine #2) and Option 040
(IF channel #2)
If you are upgrading from an E6500A VXI tuner to a receiver configuration,
and you wish to use the Ref TTL Out signal and connect it to the EXT CLK
connector on the MXI controller card, note the following:
® You must have an E6402A LO module with a serial prefix number of
3822 or greater.
® You must set up the MXI controller card to use an external clock signal.
Factory Set
Logical lAd(:iress
41 42 40 46 47 45 43
[L o L jj L ot L i) |- [L [
I R 1 U N]
8120-5017
| | | o e 8120-5015
Siaon é%o\:z?\rﬁ :::1 é%gi%gmm GRCLAToR o " /
fo Slot _ yOT, j
0 Controlier W ou | ¥ "
(optiona) g | 2 LT
B e |, |3
8120-5016 — [e i3 1o, Lo R
iy 74 2 gg
20 (Semirigid Cables)
(Semirigid Cables) [E6400-20075
E6400-20075 | E6400-20074
E6400-20074

Z suunzze

8120-6936

81 206936/

CAUTION CAUTION: | AcAUTON:
e v et
205¢ s Covoens | |1 R0 e e
All Inputs Al inputs) I Al inputs

™ 8120-5017

E6403A

-
bus
Jal

E6402A

bus
[l

| E6403A

45T
bus

8]

| E6401A

=
bus

)

LS8 7]

Figure 1-11 E6502A Option 003 Dual Channel Receiver Configuration (independent

LOs)

1-26 E6501A/E6502A/E6503A VXI Receiver User's Guide

Product Description and Configurations
Standard Receiver Configurations

E6503A Configuration The E6503A dual channel receiver consists of four single-slot C-size VXI
modules:

® E6402A Option 002 local oscillator
E6401A 20-1000 MHz downconverter (2)
E6404A IF processor with Option 022 (DDC #2 on mezzanine #1) and

Option 040 (IF channel #2)

If you are upgrading tfrom an E6500A VXI tuner to a receiver configuration,
and you wish to use the Ref TTL Out signal and connect it to the EXT CLK
connector on the MXI controller card, note the following;:

® You must have an E6402A LO module with a serial prefix number of

3822 or greater.
® You must set up the MXI controller card to use an external clock signal.

Factory Set
Logical lAddress

I | | |

el

8120-5015
roctsce |~

LocAL 20-1000MHz | |20-1000MHz [| 1@
OSCILLATOR DOWN DOWN 8120-5016
CONVERTER CONVERTER L —
-

coessi_) cces() iAccess

to Slot =l @
0 Controller oy
(optional) ‘

| BULDZzBN

186U 01PNy

8120-6936 < 20-1000 MHz
/ff"f i [—
8120-5017
ACAUTION: &éM‘
F27 8 ton +26 b Mo
42D Ma +A00C Mo
Al inputs Al lnputs | All Inpufs |
E6402A E6401A] E6401A || E64D4A
Ao
o L ! L £5G31.02

Figure 1-12 E6503A Dual Channel Receiver Configuration (shared LOs)

E6501A/E6502A/E6503A VXI Receiver User's Guide 1-27

E6503A Option 003
Configuration

to Slot

0 Controller \
(optional)
8120-6936

(6 eq) §

Semirigid Cables /
E6400-20075

E6400-20074 /

Figure 1-13

Product Description and Configurations
Standard Receiver Configurations

The E6503A Option 003 dual channel receiver consists of six single-slot
C-size VXI modules:

E6402A Option 002 local oscillator

E6401A 20-1000 MHz downconverter (2)

E6403A 1000-3000 MHz block downconverter (2)

E6404 A TF processor with Option 022 (DDC #2 on mezzanine #1) and
Option 040 (IF channel #2)

If you are upgrading from an E6500A VXI tuner to a receiver configuration,
and you wish to use the Ref TTL Out signal and connect it to the EXT CLK
connector on the MXI controller card, note the following:

® You must have an E6402A LO module with a serial prefix number of
3822 or greater.

® You must set up the MXI1 controller card to use an external clock signal.

Factory Set
Logical lAddress

I I l ! I |

40 42 41 47 45 43

el

1000-3000 MH{ | 20-1000 MHz
BLOCK DOWN DOWN
CONVERTER CONVERTER

ccass! lAccessD ceass)

8120-5014

8120-5015

[{201000 Mz 1000-3000 MHY |-+, - 2
DOWN BLOCK DOWN
CONVERTER CONVERTER

ccess’) ccessi)

LOCAL
OSCILLATOR

I
AN

| euuDZS N

20-1000 MHz
Output

Semirigid Cables
E6400-20075

[T E6400-20074

Acaution:
V2 i tan
+I0Y DSV

Al Inputs !

E6403A E640TA E6402A
. 8120-5017
@ (&)) LECI0p3

E6503A4 Option 003 Dual Channel Receiver Configuration
(shared LOs)

1-28 EB501A/E6502A/E6503A VXI Receiver User's Guide

Product Description and Configurations
Accessories Supplied

Accessories Supplied

Table 1-2 E6401A4 20-1000 MH7 Downconverter Accessories

Description Quantity Part Number

Coaxial cable, SMC (f)/SMC (f), 120 cm 2 8120-6936

Table 1-3 E6401A Option 001 20-1000 MHz Downconverter Accessories

Description Quantity Part Number
Coaxial cable, SMC (f)/SMC (f}, 120 cm 2 8120-6936
Coaxial cable, SMB (f)/SMB (f), 120 cm 1 8120-5015

Table 1-4 E6402A Local Oscillator Accessories

Description Quantity Part Number

Coaxial cable’, SMB (f)/SMB (f), 205 cm 1 8120-5017

1. This cable connects the Ref TTL Out connector to the slot O controller. This
connection is optional.

Table 1-5 E6402A Option 002 Local Oscillator Accessories

Description Quantity Part Number

Coaxial cable', SMB (f)/SMB (f), 205 cm 1 8120-5017

1. This cable connects the Ref TTL Out connector to the slot O controller. This
connection is optional.

Table 1-6 E6403A4 1000-3000 MHz Block Downconverter Accessories

Description Quantity Part Number
Coaxial cable, SMC (f)/SMC (f}, 120 cm 1 8120-6936
Semirigid cable, SMA (rﬁj/SMA (}n) 1‘ ’- E6400-20074
Semirigid cable, SMAi(m)/SMA (m) 1 o E6400-20075 .
Semirigid cable, S;M«A (m)/SMA (m) N 1 E6400-20088
Semi’rigidr cable,SMA (m)/SMA (m) " 1 é6400-20089

E6501A/E6502A/E6503A VX Receiver User's Guide 1-29

Table 1-7

Table 1-8

Table 1-9

Product Description and Configurations

Accessories Supplied

E6404A IF Processor Accessories

Description Quantity Part Number
Coaxial cable, SMB (f)/SMB (f), 100 cm 1 8120-5014
éoaxial cable, SMB (f)/SMB (%)120 cm 1 7 81270:5317577 -
Coaxial cable, SMB (f)/SMB (f), 160 crﬁ 1 8126-5016
Coaxial cable, SMB (f)/SMrB (), 205 cm 1 8120-5017
Users Guide 1 - Eé50-90006

1 E65(')v0-ﬁ1 0003

Receiver Driver Software

E6404A4 Option 031 and 040 IF Processor Accessories

Description Quantity Part Number
Coaxial cable, SMB (f)/SMB (f), 100 cm 1 8120-5014
Coaxial cable, SMB (f)/SMé (), 120 cm i 1 8120-5015
Coaxial cable, SMB (f)/SMB (f), 160 cm 1 7‘ 8120-5016
Coaxial cable, SMB (f)/SMB (f), 205 cm 1 8120-5017
User's Guide 1 1 - E6500-90006
heceiver Driver Software 1 ‘E6500—10003

E6404A Option 022 and 040 IF Processor Accessories

Description

Quantity Part Number

Coaxial cable, SMB (fy/SMB (f), 100 cm

Coaxial cable, SMB (fy/SMB (f), 120 cm

Coaxial cable, SMB (f)/SMB (f), 160 cm

Coaxial cable, SMB (f)/SMB (f), 205 cm

User's Guide

Receiver Driver Software

1 8120-5014
1 81205015
1 8120-5016
4 8120-5017
1 E6500-90006
1 E6500-10003

1-30 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Getting Started

In This Chapter

® Electrostatic Discharge
® Preparation for Use

® Checking Operation

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-1

Getting Started
Electrostatic Discharge Information

Electrostatic Discharge Information

Electrostatic discharge (ESD) can damage or destroy electronic components.
All work on electronic assemblies should be performed at a static-safe work
station. The following figure shows an example of a static-safe work station
using two types of ESD protection:

¢ Conductive table-mat and wrist-strap combination.

¢ Conductive floor-mat and heel-strap combination.

Building
Ground

1 Meg Ohm Resistor

W

Building
Ground

1 Meg
Ohm
Resistor

1
J—
1
Floor Mat =——
s |
—
) |
A)
-1
—

Figure 2-1 Example of a Static-Safe Work Station

Both types, when used together, provide a significant level of ESD
protection. Of the two, only the table-mat and wrist-strap combination
provides adequate ESD protection when used alone.

To ensure user safety, the static-safe accessories must provide at least 1 MQ
of isolation from ground. Refer to Table 2-1 for information on ordering
static-safe accessories.

2-2 E6501A/E6502A/E6503A VXI Receiver User's Guide

WARNING

Table 2-1

Getting Started
Electrostatic Discharge Information

These techniques for a static-safe work station should not be
used when working on circuitry with a voltage potential greater
than 500 volts.

Static-Safe Accessories

Part Number Description

9300-0797 3M static control mat 0.6 mx 1.2 m (2 ft x 4 ft) and 4.6 cm
(15 ft) ground wire. (The wrist-strap and wrist-strap cord are
not included. They must be ordered separately.)

9300-0980 Wrist-strap cord 1.5 m (5 ft).

9300-1383 Wrist-strap, color black, stainless steel, without cord, has four
adjustable links and a 7 mm post-type connection.

9300-1169

ESD heel-strap (reusable 6 to 12 months).

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-3

Getting Started
Preparation for Use

WARNING

CAUTION

Preparation for Use

This procedure describes how to configure and install C-size VXI modules
into a C-size VXlbus mainframe by using the following steps:

1. Setting the logical address switches
2. Installing the receiver

3. Cabling the receiver

SHOCK HAZARD. Only service-trained personnel who are aware
of the hazards involved should install, remove, or configure the
system. Before you perform any procedures in this guide,
disconnect ac power and field wiring from the mainframe.

To avoid electrical shock, always cover unused slots with the
faceplate panels that came with the mainframe.

® STATIC ELECTRICITY. Static electricity is a major cause of
component failure. To prevent damage to the electrical components in
the mainframe and plug-in modules, observe anti-static techniques
whenever handling a module.

® It is your responsibility to ensure that adequate cooling is supplied to all
modules installed in the mainframe. Section B.7.2.4 of the VXIbus
Specification (Revision 1.3) discusses module cooling requirements.
Section B.7.3.5 discusses mainframe cooling requirements.

2-4 E6501A/E6502A/E6503A VXI Receiver User's Guide

Setting the Logical
Address Switches

Table 2-2

Getting Started
Preparation for Use

Each module is shipped with a factory-set logical address as shown in the
following table. Each module installed in a mainframe must have a unique
logical address. [f there is more than one module with the same factory-set
logical address (for example, more than one module of the same model), you

must change the logical address of each additional module. This can be
accomplished by incrementing the factory-set logical address number by
five for each additional module of the same model.

Logical Address Settings

Model Factory-Set Secondary
Logical Address Address Setting

E6401A 42 47

E6402A 41 N - 467 -

E6402A Option 002 7 7 41 : 46

Eg463AV 7 40 45 7

E6404A 43 “ 48

E6404A Option 031 ,- 040 43 48

E6404A Option 022, 040 43 48 :

Procedure

Follow the steps and refer to Table 2-2 to set each module’s logical address:

1. Locate the logical address switch on each module.

2. Set the module’s logical address using the following guidelines:

a.

Use the factory-set logical address. If you have modules with the
same logical address, change the address of one or more of those
modules until all modules have different logical addresses.

If multiple mainframes are connected via MXIbus, make sure the
logical addresses of the modules in the mainframe are within the
logical address window for that mainframe.

Valid logical addresses are 1 through 255. Most Agilent
Technologies modules are statically configured modules, meaning
you have to physically set the address on a switch. A dynamically
configured module address is set programmatically by the resource
manager. To dynamically configure a module that supports dynamic
configuration, its logical address must be set to 255. Note, however,
that if a statically configured module is set to 255, the resource
manager will not dynamically configure any module.

E6501A/E6502A/E6503A VXI Receiver User’'s Guide 2-5

Getting Started
Preparation for Use

Detail of Logical Address Switch Settings

E6401A E6402A and Option 002 E4403A
Logical Address=42,, Logical Addiess=41,, Logical Addiess=40,,
oo N o & R
~—aT22283°% 2837 o283
48| [S]{S]n 8|81 o[8[B[m|]] [P ol IR
20-1000 MHz Llocal Oscillator 1000 MHz - 3000 MHz
Block Down Converter

Down Converter

Logical Address
Switch Location

Figure 2-2 E64014/E64024/E6403A Side Cover with Logical Address Switch
Location and Address Switch Configurations for each Model of Module

2-6 E6501A/E6502A/E6503A VXI Receiver User’'s Guide

Getting Started
Preparation for Use

Detail of Logical Address Switch Settings

E6404A
Logical Address=43,,
oo}

0N g N
— N <t O —

RRLAEREL

Logical Address
Switch Location

o 1 ”9\“’“ L)) O 0 \1

Sen 100

2rom, flew 4

Pagster - Bog e S st
A1oD 1o%wve
Fower Deauremants

Uy
EISES]
1

WARNING CAUTION
® T off powe fo instrurreris and field winng ® Lse clean harnding fechrniques
efore retaling o rermovng any mod.le
® 1o operator senicedabre park irside. Refer
servcing fo qualiied esonnel ® Lookout keys are nof inferded 16 piovise tail-sare
profecnor. Dorrage rray oo J i ihe local bue awiches
ori e ELANAA rodule are + cattectly Corfigurec ord
ari rcompatible locol 5.5 Toaie 1 Irstalled . giot
adjacent o trs Tod.ie

® Oriyinsfal with rretal covers aracred

Spnon og

- e o o o/

Figure 2-3 E6404A Side Cover with Logical Address Switch Location and Address
Switch Configuration

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-7

Local Bus
Compatibility

Getting Started
Preparation for Use

The E6404A is shipped with three top logo bases. Two of these bases
prevent incompatible modules from being placed into an adjacent slot to the
left or right of the keyed module. The top logo bases (also called lockout
keys) are fitted at the top of the module. Refer to Figure 2-4 for the keys that
are shipped with the E6404A.

Before During

Key Change Procedure Key Change Procedure

Side View

Bus Key

~J

i

\

L —— T S,

Front View Side View Front View

] ﬂ] '

None Left/None Right ECL Left/None Right ECL Left/ECL Right

E1400-45007 E1400-45010 E1400-45011

ckeny

Figure 2-4 Top Logo Base

Note

The local bus links modules together in a type of “daisy chain.” When
configuring a series of modules for local bus operation, you must determine
whether a module is ECL or TTL compatible. The E6404A is ECL
compatible. Compatible Agilent Technologies modules are keyed and
allowed to be configured side-by-side to form the local bus chain.
Incompatible modules cannot be placed side-by-side into the VXI
mainframe for local bus operation.

The local bus described here is not the same as the local bus used by Agilent
Technologies Lake Stevens Division for their data flow.

The local bus switch is shipped with all switches set to 0, which means that
the local bus is disconnected to the left and to the right in the chain. Refer to
Figure 2-3 for the location of the local bus switch. Refer also to Figure 3-24
for a diagram of the switches and various configuration settings.

2-8 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Table 2-3

Installing the Receiver

Getting Started
Preparation for Use

Table 2-3 describes the terms located next to the local bus switch on the side
panel of the E6404A.

Local Bus Switch Terminology

Term Description

Sync Tx ECL to the right; disconnected to the left.
Buffe?é& Sync Rx' Transmitting ECL to the left and nght
Unbuffered Sync Rx Transmitting ECL to the I;ft anc; ;léﬁ -
Terminal Synch Rx ECL to the Ierfrt;idisconnecrted tb the right.
Sole Module W Transmitting between the two -

mezzanines. Disconnected to the left
and to the right.

All switches set to 0 Disconnected to the left and to the right.

1. Buffered Sync is recommended approximately every fourth IFP. This
provides greater fan-out from the ECL source. This is an approximate
recommendation, because the loading is also a function of the mainframe.
Buffered Sync will add a 1 to 2 nanosecond time delay.

The modules can be installed in any slot except 0. The modules should be
installed in the order shown for that system configuration so the cables can
be correctly connected between the modules.

Use the following steps to install the receiver:

1. Set up the VXI mainframe. See the installation guide for your Agilent
Technologies C-size VXlbus mainframe. If the mainframe is turned on,
turn it off by pressing the button in the lower-left front corner.

2. Select the correct slot for each module. See the systems illustrations in
the “Standard Receiver Configurations” section in Chapter 1.

3. With the extractor handles lifted, insert each module into the mainframe
by aligning the top and bottom of the module with the card guides inside
the mainframe. Slowly push the module straight into the slot until it
seats in the backplane connectors. When installing modules in the
E1421B mainframe, the “top” of a module will be on the left when it is
installed horizontally.

4. Secure the modules to the mainframe by pushing the extractor handles in
until they lock in place.

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-9

Cabling the Receiver

Installing the MXI
Controller Cable

Configuring a Multiple
Mainframe System

Note

Getting Started
Preparation for Use

Refer to the “Standard Receiver Configurations™ section in Chapter | for
cabling configuration illustrations.

10 MHz Reference
We recommend that:

® any external reference used for the E650XA have good phase noise and
stability

® the slot 0 controller use the E6402A Ref TTL out signal to ensure
optimum performance of the overall system

The MXI controller cable must be installed in a specific orientation for
proper operation of the receiver/PC. Locate the connector closest to the label
on the cable that reads:

CONNECT THIS END TO

DEVICE CLOSEST TO

MXIBUS CONTROLLER
IN THIS DAISY CHAIN

Connect this end to the PC.

Perform the following procedure to ensure proper communication between
mainframes for a multiple mainframe configuration.

Switch settings in the MXIbus card will also need to be changed for multiple
mainframe operation. Refer to the National Instruments MXIbus User’s
Guide for information.

1. Click the Start button in the taskbar at the bottom of the screen.

2. Move the mouse pointer over the Programs command. The Programs
menu appears.

3. Move the mouse pointer over the Ni-vxi command. The Ni-vxi menu
appears.

4. Click the T&M Explorer item. Refer to Figure 2-5. The dialog box shown
in Figure 2-6 appears.

2-10 E6501A/E6502A/E6503A VXI Receiver User's Guide

Figure 2-5

Figure 2-6

Programs

Documents

L

Settings

e

N

Eind

Help

| & &

x

Bur...

Windows NT Workstation

Shut Dovr...

Getting Started
Preparation for Use

7] Accessories

=) HP ES50x Demo
A Startup

»

(%] Shorteut ta hpeBSix _VFP

% NI Spy
@ NIVt Function Reference
» £ Feard Me

Command Prompt

_,‘:J Windows NT Explorer

@ Resman

.g Admiristrative Tools [Common} #
_g Startup
L=, Viprip

Starting the T&M Explorer

)‘T&M Explorer - System View [.1o]x]
File Edt View JTook Help
2|3 [sustemview = Bl 3]
Devica Name i Addiesst Manufactuer | Model
= 2 TAM System
= @Y PCIMMI-2 0 Matllnsts PCIMAL2
= 3A MAl-2Bus 0
~ %) 0 Frame 32
2 MRz 32 Matllnsts VM2
o E64D1A 33 Hewlett Pack E64014,
i EBa1s2 34 Hewlstt Pack EE4014,
o EE4016.3 25 HewlstPack 64014
E64D14 4 k'3 Hewlett Pack E64014,
640145 37 Hewlett Pack ER4014
E64014_6 28 Hewleh-Pack EB40N4
o Eeanze 44 Hewlstt Pack EG4024
= agd Wl Frame 48
£ w2 48 Natllrets WAIMA2
4§ EB04A 43 Hewlstt Pack E64044
) EB404_2 50 Hewlsh Pack E64044
J EBal4a 3 51 Hewleht Pack EG4044
o ASRLID INSTR LFT1
@ 45BL1Y INSTR LPT2
e ASRL1Z IN3TR LFT3
o ASRLIZ INSTR LPT4

FReady

T&M Explorer

HUM

5. Double-click the VXI-MXl-xx item. The VXI-MX}I-xx Properties dialog box
appears as shown in Figure 2-7.

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-11

Getting Started
Preparation for Use

V¥1-MXI-2 Properties

General 1\"2(|] Hesoun:esl SignalMappingsi

J] Vl-KI-2

Device Type: Wil Extender device
VISA Resource Name: Vel 12INSTR

- Devica Status
Device is working propery.

- Device Usage

Hardware Corfiguration 1

Ok 1 Cancel I Help

Figure 2-7 VXI-MXI-xx Properties

6. Click the Hardware Configuration button. The Settings for VXI-MXI-xx
dialog box appears as shown in Figure 2-8.

Settings for VXI-MXI1-2 (#A2940D. Rev. D) at LA 1 HE

Beneral | Device | MX1-2Bus | ¥4 Bus |

Guick Configuration

You can use these predefined configurations to quickly set up this
board for use in common system configutations

Common configurations: {8 a1 R e UEwT) v

Archive

== 7 Youcan save the current configuration of the device lo a file, or
Inad a previously recorded configuration.

Recadtofie .. | Loadhomfle... |

QK I Cancel 1 Help l
Figure 2-8 Settings for VXI-MXI-xx

7. Click the Device tab. Refer to Figure 2-9.

2-12 E6501A/E6502A/E6503A VXI Receiver User's Guide

Getting Started
Preparation for Use

Settings for VXI-MXI1-2 {/A2940D, Rev. D} at LA 1 HE

Gerieral Device] M2 Busl Wl Bus]

Logical Address Selection

1% Use DIP switch to set the logical address
€ Set from configuration EEPROM

3

Shared Memory

Address space: (424 'i Requested Memory: 218 KB 'I

{™ Enable A242432 wiite posting
I~ Enable A15 wits posting

{™ Operate in Interiocked mode

oK] Cancel Help

Figure 2-9 Device Tab

8. Select Operate in Interlocked mode.

9. Click the OK button in the Device tab.

10. Click the OK button in the Settings for VXI-MXI-xx dialog box.
11. Repeat step 5 through 10 for the other mainframe(s).

12. Close the T&M Explorer dialog box.

PC or UNIX Table 2-4 shows the minimum hardware and software requirements for a PC
Workstation System or UNIX workstation.
Requirements

Table 2-4 System Requirements

PC UNIX Workstation
computer pentium HP 9000 Series 700
computer
operating system Windows NT 3.5 or greater HP-UX 9 or greater
Windows 95 or greater
RAM 16 MB or greater
interface card PCI/VXI interface card E1489 MXI interface card

or equivalent

The driver software is VXI Plug&Play compatible. Source code is provided
for the driver software. In order to use a UNIX workstation, you must
convert the driver software.

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-13

Installing the Software

Table 2-5

Configuring the VXI
Bus Timeout

Note

Getting Started
Preparation for Use

This section shows how to install the driver and virtual front panel
demonstration software files onto a PC. The driver software does not run on
a UNIX workstation.

List of Installation Files

Component File

Header Files C:\Program Files\Hewlett-Packard\E650x\Include\hpe650x.h

Header Files C:\Program Files\Hewlett-Packard\E650x\Include\hpe650x.hip

Library Files C:\Program Files\Hewlett-Packard\E650x\lib\hpe650x.lib

Library Files C:\Program Files\Hewlett-Packard\E650x\lib\npe650x.exp

Program Files C:\Program Files\Hewlett-Packard\E650x\vfp\Demo.exe

DLL Files C:\Windows\System32\hpe650x.dl|

1. If you are running Windows NT™, log in as administrator, or as a user
with administrator privileges.

2. Insert the E650XA CD into the CD-ROM drive.
3. Click the Start button in the taskbar at the bottom of the screen.

4. Move the mouse pointer over the Settings command. The Settings menu
appears.

5. Click the Control Panel folder. The Control Panel appears.

6. Double-click the Add/Remove Programs icon. The Add/Remove
Programs Properties dialog box appears.

7. In the Install/Uninstall tab, click the Install button. The Install Program
From Floppy Disk or CD-ROM wizard appears.

8. Click the Next button. The install wizard will guide you through
installation.

The VXI bus timeout defaults to 100 ps. In order to ensure that the driver
software returns data and result codes for all situations, set the VXI bus
timeout to 500 ps.

The following procedure applies to the PC configuration and not UNIX.

1. Click the Start button in the taskbar at the bottom of the screen.

2. Move the mouse pointer over the Programs command. The Programs
menu appears.

3. Move the mouse pointer over the Ni-vxi command. The Ni-vxi menu
appears.

2-14 E6501A/E6502A/E6503A VXI Receiver User's Guide

Starting the Virtual
Front Panel

Note

o =N

10.
1.

Getting Started
Preparation for Use

Click the T&M Explorer item. Refer to Figure 2-5. The dialog box shown
in Figure 2-6 appears.

Double-click the VXI-MXl-xx item. Refer to Figure 2-7.

Click the Hardware Configuration button. Refer to Figure 2-8.
Click the vXI tab in the properties dialog box.

Change the bus timeout (BTO) parameter to 500 ps.

Click the OK button in the VXI tab.

Click the OK button in the Settings for VXI-MXI-xx dialog box.

Close the T&M Explorer dialog box.

The following procedure shows how to start the virtual front panel software
on a PC running Windows NT® or Windows 95%. This procedure assumes
that the receiver modules are installed, and that power to the VXI mainframe
is turned on.

The virtual front panel software does not run on a UNIX workstation. No
source code is provided for the virtual front panel software. The virtual front

panel is provided as a means to demonstrate some of the capabilities of the

receiver hardware. It is not intended as a general purpose user interface. It is
provided to help users get started before implementing their own software
using the driver provided.

Click the Start button in the taskbar at the bottom of the screen.

Move the mouse pointer over the Programs command. The Programs
menu appears.

Move the mouse pointer over the Ni-vxi command. The Ni-vxi menu
appears.

Click the Resman item. Refer to Figure 2-10. The dialog box shown in
Figure 2-11 appears. The Resman program must be run once after the
E650XA or any VXI equipment has been turned on.

Click the Close button.

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-15

Getting Started
Preparation for Use

Programs &) Accessories

iz Startup >
Documents ' @ Cammand Prompt % NI e
@ MNI-XIE Function Refererce
Settings » Shortcut to hpeBS0x_WFP

2 Read Me

Windows NT Expl
Eind e e

5 Administrative Tocls [Common) ¥ 2,0 T&M Explorer

3 v
Bun... & Startup v
- =, Vyipnp

Shut Down...

¥ | Windows NT Workstation

Figure 2-10 Running the Resource Manager

Figure 2-11

VXl Resource Manager I

A \ 3&;}3

%

Resource Manager completed successfuly.

VXI Resource Manager

6. Click the Start button in the taskbar at the bottom of the screen.

7. Move the mouse pointer over the Programs command. The Programs
menu appears.

8. Move the mouse pointer over the HPE650X Demo Program command.
The HPE650X Demo Program menu appears.

9. Click the Demo Virtual Front Panel item.

If your receiver is an E6501A, make sure the selections in your setup
dialog box match those shown in Figure 2-12.

2-16 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Getting Started
Preparation for Use

EG404A Setup

{¥ Enable IF Channel 1 [~ Enable IF Channel 2
¥ Tuner Attached r :
[~ 3GHzcard 1 .
LO card: i,ﬂ
1GHz card: [42 :
: ¥ Enable Mezzanine 1 {~ Enable Mezzanine 2
& Monitaring Mode c
€ Search Mode &
Lapout to Load - . Boot Source
IF module L& {43
o lLayouH
[lLayour 2 " Host
¢ JLavout 3 & Emulstor1 Start
- lLayout-'l O Emulator 2

Cancel ‘

Figure 2-12 Setup for the E6501A

If your receiver is an E6502A, make sure the selections in your setup
dialog box match those shown in Figure 2-13.

EG404A Setup

¥ Enable IF Channe] - o ¥ Enable IF Channel 2

¥ Tuner &ttached W Tuner Attached
™ 3GHzcard i ™ 3GHzcad |

LD card: 47 L0 card: {ap

1 GHz card:]42 1 GHz card: {47

¥ Enable Mezzanine 1

@ Monitoring Mode € Monitoring Mode

™ Search Mode &~ Search Mode
l.ayout to Load Boot Source

IF module LA 143
o ‘LayouH % Flash
o]Layoul2 Host
¢ |Layout 3 Emulator 1 Start I
€ JLapout 4 € Emulator 2
Lancel i

Figure 2-13 Setup for the E6502A4

If your receiver is an E6503A, make sure the selections in your setup dialog
box match those shown in Figure 2-14.

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-17

Getting Started
Preparation for Use

¢ Enable |F-Channel 1

- Tuner Altached

{™ 3GHzcad]

EG404A Setup

¥ Enable IF Channel 2 -

W Tuner Attached -

™ 3GHzcard | ¢

LO card: 141 LO card: {41
1 GHz card: 142 1GHz card: {47
¥ Enable Mezzanine 1 I~ Enable Mezzarine 2
& Monitoring Mode -
{" Search Mode & oy
Layout to Load - S - Boat Source [_“
IF module LA |43
& Layaut 1 : & Flash
« |Layout 2 £ Host
£ Lapout 3 £ Emulator 1 Start I
r ’Layout 4 ‘ ¢ Emulator 2
Lancel i

Figure 2-14 Setup for the E6503A4

10. Click the Start button to start the virtual front panel.

Note

Certain combinations of computers and VXI interface cards may cause the
virtual front panel not to function properly at initial start up. This condition
may require different BIOS settings. The BIOS settings that have been found
to correct this problem are as follows:

PnP operating system [no]
Advanced BIOS-PCI Busmastering - ALL SLOTS set to [Enabled]

Note

If the virtual front panel does not fit within the computer monitor, the
Display Properties under the Control Panel must be reset. For example, for a
17-inch monitor, change the font size to Small Fonts, Desktop Area to 1024
by 768, and Refresh Frequency to 70 Hz.

2-18 E6501A/E6502A/E6503A VXI Receiver User's Guide

Getting Started
Checking Operation

Procedure

Table 2-6

Checking Operation

This procedure applies only to receiver-level configurations. There is no
procedure for verifying individual module operation. This procedure
assumes a single [F channel with one DDC in the IF processor configuration.
The same procedure can be used to test dual channel systems with multiple
DDCs installed.

To verify the correct operation of the receiver configurations, you will need
the following test equipment and adapters:

Test Equipment Needed

Equipment and Critical Specification for Test Recommended
Accessories Equipment Model
Signal source Frequency range: 20—1000 MHz 8648C

or to 3000 MHz (if Option 003 is

present)

Amplitude accuracy: 1.5 dB
Power meter Power range: -30 to 0 dBm 437B

Power accuracy: 0.1 dB
Power sensor Power range: -30 to +20 dBm 8482A
Adapter Type-N (f) to BNC (f) 1250-1474
Adapter Type-N (m) to BNC (f) 1250-0780
Adapter BNC (f) to SMA (m) 1250-1200
Cable BNC (m) to (m) 10501A

1. Turn on the VXI mainframe.

2. Set the signal source power level to -20 dBm (CW) and the frequency to
30 MHz.

3. Connect the BNC cable to the signal source and measure the output
power with a power meter. Adjust for an output power reading of
-20 dBm on the power meter.

4. Connect the BNC cable that is connected to the signal source to the
E6401A 20-1000 MHz Input port or, if option 003 is present, to the
E6403A 20-3000 MHz Input port.

5. Start the virtual front panel as described in “Starting the Virtual Front
Panel” in this chapter.

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-18

Figure 2-15

Getting Started
Checking Operation

6. Click the open pulldown command, then click the RSSI for Mezzanine 1
item. The RSSI for Mezzanine | screen is displayed as shown in
Figure 2-15. Each column corresponds to a DDC on the mezzanine.

7. Ensure that Monitoring Mode is selected in the Mezzaninel pulldown
menu. The RSSI feature does not function in Search mode.

8. Click the button below one of the columns in the RSSI for Mezzanine 1
screen to read the signal level in dBm.

9. Click the Open pulldown command, then click the Tuner Controls item.

«k RSSI for Mezzanine 1 HEE3

1 2 3 4 5
|-200 | OFF | OFF | OFF | OFF

o 1 1 1 _]
RSSI for Mezzanine 1

10. In the Tuner Controls screen, change the Tuner Freq. to read 30 (MHz).
11. Verify that the amplitude is -20 dBm +/- 3 dB.
12. Set the signal source to the next frequency listed in Table 2-7.

13. Repeat steps 10 through 12 for each frequency listed in Table 2-7.

2-20 E6501A/E6502A/E6503A VXI Receiver User's Guide

Getting Started
Checking Operation

Table 2-7 Frequency Points Measured for Operator’s Check Procedure

System Type Preselector Band Frequency (MHz)
1 30
2 50
3 - 70 7 N
4 100 7
without Option 003 5 B 13'0 T
Vé’i - 180 -
7 3007 -
& 40
9 600 -
0 800 -
11 1100 7
12 1500 -
with Option 003 - T
13 2000
14 2800

E6501A/E6502A/E6503A VXI Receiver User's Guide 2-21

Using the Receiver

In This Chapter

® E650XA VXI Receiver Overview
® Using the Virtual Front Panel (VFP)
® Using the Driver Software

® Synchronizing Multiple IF Processors and Capturing Data

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-1

Using the Receiver
E650XA VXI Receiver Overview

Core Receiver
Capabilities

Note

E650XA VXI Receiver Overview

This section describes the core and unique receiver capabilities. First, the
“Core Receiver Capabilities” section describes capabilities common to all
E650XA receivers. Then, the “Receiver Capabilities By Configuration™
section shows a side-by-side comparison of the capabilities of the various
receiver configurations.

The E650XA core receiver hardware consists of the E6402A local oscillator,
the E6401A 20-1000 MHz downconverter, and the E6404A IF processor.
All receivers have a frequency range from 20 MHz to 1 GHz. With the
E6403A Option 003 block downconverter added, the frequency range is
extended from 20 MHz to 3 GHz.

The software driver supports tuning the receiver down to 2 MHz. However,
specifications, typicals, and characteristics do not apply below 20 MHz.

The receiver can operate in one of two modes: search or monitor. The
E6502A dual-channel receiver is capable of running one channel in search
mode, the other channel in monitor mode, or both channels in the same
mode.

Monitor Mode

Monitor mode can be thought of as the software equivalent of a receiver.
That is, those tasks which would ordinarily be performed with a receiver are
performed in monitoring mode. For example, multiple demodulations, link
port connectivity, data capturing (to either the link port or optional SRAM),
RSSI measurements, and FFTs.

In monitor mode, the receiver is tuned to an 8 MHz spectrum. (Note that the
E6502A dual-channel receiver with independent LOs can monitora 16 MHz
spectrum.) The analysis of the spectrum is performed without re-tuning the
tuner thus keeping a continuous IF data flow to the IF processor.

One of three anti-aliasing filters may be selected: 8§ MHz, 700 kHz, and

30 kHz. Depending upon the application, any one of the three filters may be
used in monitoring mode. (This mode is also referred to as “stare” mode
because the tuner is fixed-tuned allowing the user to stare at a continuous
spectrum for a high probability of intercept.)

The anti-aliasing filters are centered about the tuned frequency. The filter
width determines how far from the tuned frequency the digital
downconverters (DDCs) may be set; that is, using a tuned frequency of

3-2 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
E650XA VXI Receiver Overview

101 MHz and a filter of 700 kHz, the DDC may be tuned from 100.650 MHz
to 101.350 MHz.

The IF channel data may be routed in several ways: [F channel | may be
routed to each mezzanine/DDCs (mezzanine data select mode 1); IF channel
2 (optional) may be routed to all mezzanine/DDCs (mezzanine data select
mode 2); a combination of IF channel 1 and 2 data routed to each mezzanine
(mezzanine data select mode 3); IF channel 1 data may be routed to
mezzanine 1 and its associated DDCs and IF channel 2 (optional) routed to
mezzanine 2 and its associated DDCs (mezzanine data select mode 4).

One distinct advantage of monitoring mode is the use of the DDCs as digital
drop receivers. Depending upon the options installed in the receiver, up to
10 digital drop receivers may be operating simultaneously. There are some
limitations of the digital drop receiver concept. Specifically, the DDCs have
a finite allowable bandwidth.

The DDC bandwidths are referred to as digital IF bandwidths. There are 36
selectable bandwidths. When the maximum digital IF bandwidth is selected
(462 kHz), only one DDC per mezzanine can be used as a digital drop
receiver. As the digital IF bandwidth is reduced, more DDCs can be used as
digital drop receivers. Digital IF bandwidths below approximately 30 kHz
allow all installed DDCs to be used as digital drop receivers. Refer to
Table 3-1.

Another function that may be performed in monitor mode is FFTs. There are
two general data streams on which FFTs may be performed: DDC data and
full span data. Full span data is all of the ADC data for a given filter.

Figure 3-1 shows the receiver in the monitoring mode. The uppermost FFT
display shows the full span spectral display (8§ MHz in this case). The two
spectral displays beneath the full span display are two DDCs that are tuned
to two separate frequencies: 127 MHz for the left display, and 130 MHz for
the right display. Note that the DDC frequency is shown in two places: in the
Mezz 1 Controls window (DDC Freq), and in the lower-left hand corner of
the spectral display windows. Also note that the span setting for each of the
DDC displays is the same and is listed in the Mezz 1 Controls window (IF
bandwidth) and in the lower-right hand corner of the spectral display
windows.

This screen capture shows the DDCs being tuned to separate frequencies
independently within the 8 MHz stare window.

E6501A/E6502A/E6503A VX! Receiver User's Guide 3-3

Using the Receiver
E650XA VXI Receiver Overview

E650x Vittual Front Panel
Flo Selings Layot Mezzeninel Upen Wirdow Hep

2% Spectial Disgplay for Mezzanine 1

on [BMEz < fies B (85 ke Topge Corwol

1 - ks B L L olx
[on forn 3 Res BWEG dH2 _Toogle Contat | [on Gz 3 Res, BW T3 =dkz _Togge Contot

Marker Maiker
" 40

Canter. 127397671 MHz

B

IF bandwidth; 1545 kHz ¥ RS Choeel .
& et " Tueet Fieq [17 537733 =2 iz
1 2 3 4 5 Attenustion: [0d8
Fnable DAC | 2 3 4 5} 12348 12348 123458} 12345
DOCFeqMHz 1127397671 [20000051 [iz7oaseas fizzawsess | [o

IF Charnel 2
R Tuner Freq = MHz
Derod Type.] [T B) I CTNE ST =

q e
AFC Active ing -~ It ttenstion

=
Ture Ssiect & - = StepSee 10 {rHz

Figure 3-1 Monitor Mode and Multiple Spectral Displays in the VFP

Search Mode

In search mode, the receiver scans across its frequency range in 8§ MHz
steps. While the receiver dwells at each 8 MHz spectrum, the digital signal
processor (DSP) performs an FFT. In this mode, the DDCs are not used and
all of the data is sent directly to the DSP to perform an FFT on the entire
span of data.

Larger FFTs are performed in search mode. As a result, better signal
resolution is attained. Similarly, the code used to tune the tuners is optimized
for the fastest operation.

The DSP is essentially making block mode measurements in search mode.
No real-time measurements are performed; however, all of the autoranging
and dynamic range benefits are realized.

Figure 3-2 shows a 20 MHz to 1000 MHz search window in the virtual front
panel (VFP). Note that the spectrum is actually “stitched” together in § MHz
increments.

3-4 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Figure 3-2

Using the Receiver
E650XA VXI Receiver Overview

E650x Vistual Front Panel
Fim Gettings Layout Mezzaninet Opsr \Window' Help

]

1 RS i N 4
"]
ottt i ot bl ‘
- W‘w | -1 8
20MH: £09.399 MHz
88 Search Controls for Mezzanine 1
StatFreq [y | FiéSeen :‘9“ Mouse Buton - B3
Start Fr 20 MHz " View
StopFreq: {000 iz SWFM = | Tame Tued
[ioa 2
Spary {380 Mz b

£ Ture Tuner 2
16 MHz Span
fres. 8w, OS] iz

msna:l HP E650% Virual Fro

Search Mode Window in VFP

Multiple Demodulations

Multiple demodulations of AM, FM, USB, LSB, PM, and CW signals within
the 8 MHz monitor (stare) spectrum are possible. Though the standard
receivers are installed with one DDC per mezzanine, up to 5 total can be
installed per mezzanine.

Each DDC provides the capability of signal channelization and tuning to a
signal within the 8 MHz spectrum. The DSP performs the actual
demodulation. Therefore, with 10 DDCs installed in a receiver, up to 10
simultaneous demodulations can be performed.

The number of possible demodulations is dependent upon the number of
DDCs installed, and the DDC bandwidth. Table 3-1 shows the maximum
number of demodulations allowed versus the digital IF bandwidth (DDC
bandwidth). The information in Table 3-1 assumes five DDCs are installed
per mezzanine.

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-5

Using the Receiver
E650XA VXI Receiver Overview

Table 3-1 Demodulations Versus Digital IF (DDC) Bandwidth

Number of DDCs Bandwidth (Maximum)

1 462 kHz

2777 - 187 kHz

3 83 kHz

4 54 kHz -
5 34 kHz

Digital IF (DDC) Bandwidths

The digital IF bandwidths, or DDC bandwidths, are controlled by the
DDC(s) on the mezzanine assembly. Receivers with more than one DDC on
a mezzanine are all set to the same digital IF bandwidth. The E6502A is a
dual receiver with two mezzanines. This configuration allows the digital IF
bandwidth to be different between the two mezzanines.

The digital IF bandwidths are equivalent to span width in monitor mode
processes as shown in Figure 3-1.

3-6 E6501A/E6502A/E6503A VXI Receiver User's Guide

Table 3-2

Using the Receiver
E650XA VXI Receiver Overview

Table 3-2 shows the digital [F (DDC) bandwidths available.
Digital (DDC) IF Bandwidths

0) 247 Hz (13) 29kHz (26) 187 kHz

(1 493 Hz (14) 34kHz 27y 201 kHz

(2) 740 Hz (15) 44 kHz (28) 218 kHz

(3) 1kHz (16) 54kHz (29) 238 kHz

@) 24kHz (17) B4kHz (30) 262 kHz

(5) 3 kHz (18) 74 kHz (31) 291 kHz

(6) 5 kHz (19) 83 kHz (32) 327 kHz

(7) 625kHz (20) 93kHz (33) 374 kHz

(8) 10kHz (21) 109kHz (34) 436 kHz

(9) 125kHz (22) 123kHz (35) 462kHz

(10) 15kHz (23) 138 kHz

(11) 20kHz (24) 154 kHz

(12) 25kHz (25) 171kHz

The number shown in parenthesis indicates the value passed to the
E650XA driver to set the corresponding bandwidth.

Gain Control and Dynamic Range Optimization

Each receiver has analog autoranging gain control from +12 dBm to

—48 dBm in 2 dB steps. The receivers automatically control gain in each
band depending on the signal level and thus allow the monitoring of both
high- and low-level signals across the entire search band. In addition, the fast
response time ensures that the digitizer (ADC) is protected from overload by
high-level signals.

Analog Outputs

A special multi-pin connector (Audio/Trigger) on the E6404A [F processor
provides demodulated analog audio outputs. The output connector can be
used to connect to amplified speakers, headphones, and analog audio
recorders. In addition, options can be ordered to extend the number of
simultaneous analog audio output signals to 10. By connecting an external
cable from this connector to an audio breakout box (E3245A), ten
headphones or ten speakers can be connected for monitoring of up to ten
audio signals. Note that the maximum audio bandwidth of the audio signal is
15 kHz. Refer to Figure 3-3.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-7

Using the Receiver
E650XA VXI Receiver Overview

Breakout Box Connector View

AMP 750823-1
13 1

goocooooosoonn
onooo0onooocoon

26 14

s [© 00 ©O|© ©
© OO OO 2@

Figure 3-3 Audio/Trigger Connector Pinouts and Audio Breakout Box

=il

audiobox

Note The Audio/Trigger connector shown in Figure 3-3 shows the rear view of the

connector.

Table 3-3 shows the pin numbers for the Audio/Trigger connector and
corresponding Audio Breakout Box jack connections.

The Audio/Trigger connector on the front panel of the E6404A IF processor
is part number AMP 750823-1. To configure your own cable, order AMP
750833-1 cable connector and 750850-3 backshell kit.

Table 3-3 Audio/Trigger Connector Pinouts

Audio/Trigger
Connector Signal

Audio/Trigger

Audio Breakout Box Connector Return

VFP Channel Number

Jack Pin Number Pin Number
1 1 15 14
7 2 2 3 4
3 3 2 1
N 7 4 7 4 1767 17
5 5 19 s
6 6 7 8
7 7 s 5
8 8 20 - 77217””
9 9 23 22
10 B 10 11 12 -
7 Input Trigger N 11 i 10 797 -

3-8 E6501A/E6502A/E6503A VXI Receiver User's Guide

Note

Using the Receiver
E650XA VXI Receiver Overview

Digital Outputs

The receivers are capable of various digital data outputs from the Link Port
connectors on the E6404A [IF processor. These ports provide full rate
digitized data from the analog-to-digital converter (ADC), or I and Q data
from the DDC for use by an external DSP device or digital recorder (to PC,
VXI, or VME).

The Link Port connector on the front panel of the E6404A IF processor is
part number AMP 1-104074-0. The mating connector is part number AMP
487550-5. The eight pin Link Port connector is compatible with the Analog
Devices 2106 X family of DSP devices. Link port cables are available from
Transtech Parallel Systems to connect to external DSP devices (part number
TTC27-x, where x = length of cable in cm).

Only 3 meter (or shorter) cables can be used with the receiver.

Table 3-4 shows the Link Port pin numbers and corresponding signals.
Figure 3-4 shows the Link Port connectors and pin number orientation on
the E6404A IF processor.

Table 3-4 Sharc Link Port Pinouts

Pin Number Signal

1 CLK
ACK
GND

DAT (0)

GND

2
3

4

5 DAT (1)
o -)
.

DAT (2)
8 7 DAT (3)

|

SHOd Ul

4

1

pinouts

Figure 3-4 Link Port Pin Orientation

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-9

E6404A

21.4 MHz

16 bits wide

Using the Receiver
E650XA VXI Receiver Overview

h

f

Table 3-5 Link Port Digital Data Output
Digital Data
h Parameters
(Link Ports)
full rate data 28.533 Msamples/sec
(using 2 link ports)
57.066 MBytes/sec
(16 bit samples)
digital I/Q data 247 Hz to 462 kHz DDC
bandwidth (up to 10 signalis)
Figure 3-5 shows the output data format for full rate data.
[] .
. Third-Party SHARC
s DSP Module
[
transmit SHARC insfructions receive SHARC instructions
(one per clock cycle): (one per clock cycle):
tead FIFO ' read Link Port |
13 wiite Link Port 1 e wiite X
QO read FIFO 1 O read Link Port 2
write Link Port 2 : write X
Link 1
16 bit/sample 32 bit/sample Pom 1 32 bit/sample
16 bit/clk cycle 32 bit/clk cycle/2 bs - n 32 bit/clk cycle/2
clk: 28.533 MHz clk: 28.533 MHz ' clk: 28.533 MHz
ADC Ri?\} 19wl o 32 » siarc | otk 1 | suarc 320wl x
Port2
4 .
— -
1
1
1
N
15]15[(15]115]15]15]15[15 SIEIEEIE ' SIBIBIBIE
M N R S ' HHHE
() M|l |~ | X || ¥ | | ~ ||
clllo|elo|ele|e 0N IR KoY o) ! Llofole
clalalaelalelala Qla|ala 1 alglala
slelelelElE|E|E ElE|E|E ElE|E|E
“121c(c|lo|o|0]|D Z2l1o|o|o] Zlol|olo
O [] o
[CANCH NN NG NOR NN NN NG] i<OOOO ' i 0l10]0]0
ol 15115115115 '6< 15115[15[15
) 1
Time N s o)
; - | 2EEE ' L EERE
T 2lelo]o ' clele|o
glalc|a ' glalga]a
slElE|E SlElElE
71281318 1 2181318
1
\ 0j0lajo . \ 0]0]0Q}0
)])
Time ' Time
1
1

Sedatacdn

Figure 3-5 Full Rate Data Sharc Link Output Data Format

3-10 E6501A/E6502A/E6503A VXI Receiver User's Guide

Receiver Capabilities
By Configuration

Table 3-6

Using the Receiver

E650XA VXI Receiver Overview

Table 3-6 shows the capabilities that vary between the three standard
receiver configurations. Refer also to Table 1-1 for options that extend

standard receiver functionality.

E650XA VXI Receiver Capabilities

E6501A E6502A E6503A
RF input single dual dual
analog audio output channels 1 2 2
link ports 2 4 2
IF channels 1 2 2
simultaneous search and X
monitor
direction finding applications X
maximum monitor (stare) 8 MHz 16 MHz" 8 MHz
bandwidth
maximum DDCs in standard 5 10 5
configuration without adding
extra mezzanines.
maximum optional DDC 10 10 10

configuration

1. The 16 MHz of “stare” bandwidth is achieved by including two 8 MHz FFTs,
side-by-side, in one 16 MHz window. This is not intended as a 16 MHz
continuous bandwidth capable of looking at signals with modulation

bandwidths greater than 8 MHz.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-11

Using the Receiver
Using the Virtual Front Panel

Note

File Menu

Settings Menu

Figure 3-6

Figure 3-7

Using the Virtual Front Panel

This section provides descriptions of the functions found in the virtual front
panel (VFP) graphical user interface (GUI). The VFP enables users to
interactively change settings and display results from measurements such as
FFTs.

The VFP is intended to demonstrate some of the receiver hardware
capabilities. It is provided to show the user a simple example of how they
might design their own interface. The VFP is not intended to be a full
featured software solution.

The File menu performs three functions as shown in Figure 3-6.

E650x Yutual Front Panel
Settings Lapout Mezzaninel Open Window Help

Save Current Lapout

|nstrument Preset

E xit

File Menu

Save Current

Layout You can open and arrange displays in the main VFP
window according to your needs, then save the layout
with this function. Note that up to four different layouts
can be saved by using the Layout menu.

Instrument

Preset Selecting Instrument Preset will configure the receiver to
the preset state.

Exit Exits the VFP GUI.

The Settings menu is used to set up various receiver functions in the General
Setup dialog box. The Settings menu is shown in Figure 3-7.

E650x Virtual Front Panel

File Layout Mezzaninel Open Window Help
General Setup : S e

Settings Menu

3-12 E6501A/E6502A/E6503A VXI Receiver User’s Guide

General Setup Dialog Box

Using the Receiver
Using the Virtual Front Panel

Figure 3-8 shows the General Setup dialog box.

Mezzanine 1

RSSH Meas. Time: 110 ms
ALL Attack Rate: 12 ms

ALL Decay Rate: 1500 ms

177

Tuner 1 RBeference
& Intemal
 Enternal

Tuner 2 Reference
& Internal
" Entemal

Mezzanine Data Control Mode -

[Enable IF Reference Out

 mode 1 &

 mode 4

Figure 3-8 General Setup Dialog Box

RSSI Meas.
Time:

ALC Attack
Rate:

ALC Decay
Rate:

Internal:

External:

mode 1
mode 2
mode 3
mode 4

Note

This function sets the amount of received signal strength
indication (RSSI) measurement time.

The ALC attack rate controls the attack time of the ALC
for the audio output. The value is in milliseconds (ms).

The ALC decay rate controls the decay time of the ALC
for the audio output. The value is in milliseconds (ms).

Selects the use of the internal 10 MHz reference of the
tuner.

Deselects the internal 10 MHz reference of the tuner.

Selects the desired data routing through the IF processor.

Refer to the “Mezzanine Data Select Modes” section in
this chapter.

Mode 4 must be used for simultaneous search and monitoring (E6502A) or

for 16 MHz stare.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-13

Using the Receiver
Using the Virtual Front Panel

Enable 1F
Reference Qut Enables the 10 MHz reference output in the IF processor.

Layout Menu The Layout menu is used to select between four user-defined layouts. The
Layout menu is shown in Figure 3-9.

EB650x Virtual Front Panel

File Settings JETT @ tezzaninel Open ‘wWindow Help

v Layout 1
Layout 2
Layaut 3
Layout 4

Figure 3-9 Layout Menu

Layout 1

Layout 2

Layout 3

Layout 4 This function allows you to save and select one of four
different display layouts.
To define a layout, select the layout number in the
Layout menu, open and arrange displays as needed, then
save the layout using the Save Current Layout command
in the File menu.

Mezzanine Menu The Mezzanine menu is used to select between monitoring and search

modes. A pre-defined layout for monitoring mode is shown in Figure 3-10.

3-14 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Using the Virtual Front Panel

E£650x Virtual front Panel CEL

e Setings Layout [EEmRal Oven Window Heb

Moniaring Mot Jameemee
Search Mode

32 554
i |y o Bw. [<{H: _Togge Conual

Marker:

1 L a0 - LLixBl . =
Fbandwide [33%He 7} ResetDOC's | mememaiewdo | oemphasis | I Channel 1 o
IF Chan 1 F s Tuner Fieq, |20 j MHz Anaiog Fiter. (g
1

3 4 5 Attarasntion (08~ Gan: ¥ Autorangs

Enable DAC © 123 4 5] pz3e8) tzoeslionzaxsd
DDCFeq(MH) {20 6 [[IF Channel 2

n2
Tuner Fraq = e Araiog Fiter
ComdTpe {4 <] 2 I YR B TR &) YA rteraron, 7] Gan [T

AFE Active

r i ~ ~
Ture Select > Step Size {10 kHz ¥

B Stast] [[6) HP E650x Virtual Fro.

Figure 3-10 Mezzanine Menu with Monitoring Mode Selected

‘ A pre-defined layout for search mode is shown in Figure 3-11.

E650x Virtual Front Panel
Fie Seltngs. Lagow Upen Window Help
E Monkoring Mode

v Search Mcde

Search Display for Mezzanine 1

LT |

- Fieg Amphude

o Dot a1 st i bt bbb b b Lo bl o bt b b s L di v b 2
20MHz S03.959 MHz 353397 MHz

£l S Righ Mouse Burton
SlatFreq; |20 Mz
Start Frexe J20 MHz L View

£ Tune Turer 1
Stop Freq, {1000 Mz

Span {380 Mz © Ture Tune 2

Stop Freg: {1000 Mz

\ © 16MH2 Span
Res, 8w 209 Kz

i Stant| [[5 HP E650x Virtua) Fro

Figure 3-11 Mezzanine Menu with Search Mode Selected

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-15

Open Menu

Figure 3-12

Using the Receiver
Using the Virtual Front Panel

The Open menu is the main access to most functions. The Open menu is
shown in Figure 3-12.

EG650x Virtual Front Panel

File Seftings . Layout Mezzaninel m Window Help
E - Mew Spectral Display

Mezz. 1 Controls

Audio Controls {Mezz 1)

RSS! for Mezzanine 1

Search Controls for Mezzanine 1
Search Display for Mezzaning 1
IF Channel Controls

Tuner Controlg

BF(Contiol

Open Menu

New Spectral Display

Figure 3-13 shows the New Spectral Display. Multiple spectral displays can

be opened. These displays are only used in monitoring mode.

Spectral displays, or IF pan windows, allow you to channelize signals. The

IF pan windows are also referred to as digital drop receivers (DDR).

EB50x Vitual Front Pas
fhie Setings Layout Mezzanins

oo Controls (Mazz 1)
A lor Mezzanive 1

Search Contiots ot Mezzanene 1
Seach Display tor Mazzanine 1
if Channel Controls

Tarer Cortrals

BFD Contol

3 Spectial Display lo: Mezzanine 1

onf fownT 2] Reew <4z ToggleContd |

i Start| [HP E650x Virtual Fro...

Figure 3-13 New Spectral Display

3-16 E6501A/E6502A/E6503A VXI Receiver User's Guide

Off

Chan

Res. BW
Averages
dB/div

Toggle Control

Using the Receiver
Using the Virtual Front Panel

Turns the spectral display on and off.

This drop-down menu allows you to select a specific
channel or select the 8 MHz monitor (stare) mode where
you monitor an entire 8 MHz spectrum. This function
works in conjunction with the functions found in the
Mezz Controls dialog box. Note that the digital [F
bandwidth setting in the Mezz Controls dialog box
determines the number of possible channels (DDCs). In
general, the wider the bandwidth, the fewer available
channels (DDCs). Refer to Table 3-1 for the limitations.

The Res. BW function allows you to change the
resolution bandwidth.

The Averages function corresponds to the number of
trace averages to smooth the trace displayed.

The dB/div function changes the dB per vertical division
from 1 dB to 100 dB in 5 dB steps.

Toggles between the Res. BW, Averages, and dB/div
functions.

Shortcut Menu in Spectral Display

By clicking the right mouse button when the mouse pointer is in a spectral

display window, a shortcut menu appears as shown in Figure 3-14.

v Mezzanine 1
Mezzanine 2
Marker

« Pre-Demod

Window Type
v Trigger On
Tutbo Speed

¥

v Mezzanine 1

Mezzanine 2
o Tone DOC
T T Tune Tuner
v Pre-Demod i v Mezzanine 1
. tew '
R Mezzanine 2
e Marker 4
Window T , .
I ow' wpe . v Pre-Demod
v Trigger On : e
Turbo Speed L -
< Horrig
) - Flattop
¥ Trigges D,n Rectangle
Turbo Speed

Figure 3-14 Spectral Display Shortcut Menu

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-17

Note

Using the Receiver
Using the Virtual Front Panel

Mezzanine 1
Mezzanine 2 Selects either mezzanine | or 2.

Marker Clicking the left mouse button inside a spectral display
causes a marker to appear. The marker will display
frequency and amplitude information. One of three
functions may be selected.

With the Tune DDC function selected, the DDC
frequency will track with the marker frequency.

With the Tune Tuner function selected, the tuner
frequency will track with the marker frequency.

The View function simply allows viewing of the marker

and does not adjust frequency.

Window Type This function selects Hanning, Flatop, or Rectangle
windowing. Refer to Chapter 4 for an explanation of
windowing and its purpose.

Turbo Speed Increases the display refresh rate.

16 MHz Stare

This function is only available in the E6502A dual channel receiver with
independent 1.Os. The 16 MHz Stare function can monitor, or stare, at a
16 MHz spectrum, rather than an 8 MHz spectrum as in the other receivers.

The IF module must be set to mode (3 or 4) for this window to work with
16 MHz of “stare” bandwidth.

Mezz. 1 Controls

The mezzanine control panel allows you to control the DDCs and their
bandwidth. Note that the DDC bandwidth is not the same as the analog
bandwidth. The DDC bandwidth corresponds to the span in the IF pan
windows. Figure 3-15 shows the mezzanine control panel.

Wi. Mezz. 1 Controls [1] %]

IF bandwidth: !9.9 kHz " Reset DDC's i Inter mezzanine audio I De-emphasis 1

IF Chan 1 IF Chan 2
1 2 3 4 5
EnableDAC 12 3 4 5] i 234 5] 1234 5] 1 234 5] {234 5]
DDC Freq [MHz): |20 |20 |20 [20 [0

DemodType: |PM =] [M ~} [=} |] M 7]
AFC Active I~ i~ r— - r
Tune Selsct & r e ~ 's

Figure 3-15 Mezz. 1 Controls

3-18 E6501A/E6502A/E6503A VXI Receiver User's Guide

IF bandwidth

Using the Receiver
Using the Virtual Front Panel

The drop-down menu allows you to select the digital [F
bandwidth for the DDCs on a given mezzanine. Note that
the DDCs on any given mezzanine must all be set to the
same bandwidth, but they can each be set to a different
frequency.

Reset DDCs Forces the DDCs to a known state.

Inter

mezzanine

audio Routes audio signals from one mezzanine to the other in
a dual mezzanine configuration. This allows the use of
the audio breakout box for 10 simultaneous audio
outputs.

Note If you are in Mezz. 1 Controls and you click Inter mezzanine audio, you will

send all the DAC outputs out the mezzanine 2 audio connector and vice

versa.

De-emphasis

Enable DAC

DDC Freq
(MHz):

Demod Type:

AFC Active

Tune Select

Improves FM sensitivity.

This function corresponds to the audio output located on
the front panel of the E6404A IF processor. This allows
you to listen to the demodulated audio for a specified
DDC.

This function aliows you to tune any given DDC to a
frequency within the analog bandwidth.

This function selects the type of demodulation on each
DDC.

Note that you cannot simultaneously perform multiple
demodulation types on any given DDC. For example,
you cannot select AM demodulation on DDC 1 on IF
channel 1, and FM demodulation on DDC 1 on IF
channel 1.

Enables/disables automatic frequency control.

This radio button corresponds to which DDC to tune
(frequency). If the marker in the spectral display is
configured to Tune DDC, then the DDC frequency will
track the marker frequency.

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-19

Using the Receiver
Using the Virtual Front Panel

Audio Controls (Mezz 1)

This control corresponds to the audio output located on the front panel of the
E6404A 1F processor. The control panel shown in Figure 3-16 is used to
adjust the audio volume level controlled by the DAC that was selected with
the Enable DAC function for the DDC in the Mezz. 1 Controls panel, as well
as enable and set the level of squelch.

3% Audio Controls {Mezz 1)

Squelch Level Volume Level

DACH#1 DaACH#2 DaCH3 DaCH#4 DACHS

{™ Enable Squelch

Figure 3-16 Audio Controls

RSSI for Mezzanine 1

The RSSI (Received Signal Strength Indicator) window automatically
computes the channelized power in a given DDC and graphically displays
the results. The bold numbers above each column shown in Figure 3-16
correspond to the DDC numbers in the mezzanine. Activate an RSSI
measurement for a given DDC by clicking the corresponding box shown
below each column.

&R R5S5I for Mezzanine 1 N B3

1 2 3 4 5
[oFF [OFF [OFF [OFF [OFF

N O R
Figure 3-17 RSSI Controls

Search Controls for Mezzanine 1

The search control panel is used to control various functions assoctated with
the search process. Figure 3-18 shows the search control panel.

3-20 E6501A/E6502A/E6503A VX! Receiver User’'s Guide

Figure 3-18

Note

Note

Using the Receiver
Using the Virtual Front Panel

21 Search Conlrols for Mezzanine 1 N E3

Start Freq: |20 MHz

Full Span Fight Mouse Button

— Start Freq: {20 MHz " View
Stop Freq: |1 0ao MHz

Span: ‘980 MHz

Fles. BW: ’20-9 ﬁ kHz

& Tune Tuner 1
: 31000 MH :
Stop Freq: z S Tune Tuner 2

= 16 MHz Span

Search Controls for Mezzanine 1

The software driver supports tuning the receiver down to 2 MHz. However,

specifications, typicals, and characteristics do not apply below 20 MHz.

Start Freq:

Stop Freq:
Span:
Res. BW:

Sets the start frequency of the search display window.
The start frequency must be greater than or equal to
2 MHz.

Sets the stop frequency of the search display window.
Sets the span of the search display window.

Sets the resolution bandwidth of the search display
window.

Since there is a finite number of displayable points, it is possible to have a
smaller actual resolution bandwidth than display bandwidth.

Full Span
Start Freq:

Full Span
Stop Freq:

View

Tune IF
Chan 1

16 MHz Span

The search display window will default to this setting of
start frequency when you click on the Full Span button.

The search display window will default to this setting of
stop frequency when you click on the Full Span button.

This function allows you to view the frequency and
amplitude of the marker when you click the right mouse
button inside the search display window.

This function causes the tuner’s frequency to track the
frequency of the marker when you click the right mouse
button inside the search display window.

Allows 16 MHz spans in monitor (stare) mode
(E6502A only).

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-21

Figure 3-19

Figure 3-20

Using the Receiver
Using the Virtual Front Panel

Search Display for Mezzanine 1

The search display shows a spectral display of either the entire frequency
span of the receiver, or a span defined by the user in the Search Controls
panel. The results of data are taken in 8 MHz steps and displayed as one

continuous spectrum from the specified start frequency to the specified stop
frequency. Figure 3-19 is an example of a search display.

ansan i =

509 999 MH2Z 999,997 MHz

Search Display for Mezzanine 1

Off

On Turns the search display on and off.

Full Span The Full Span button sets the start and stop frequency
settings to those defined in the Search Controls panel
under Full Span.

dB/div The dB/div function changes the dB per vertical division

from 1 dB to 20 dB.

IF Channel Controls

The IF channel controls allow you to select the desired analog filter and gain
setting for each IF channel. Figure 3-20 shows the IF channel controls.

%% IF Channel Controls [_ |] x]

~Ch. 1
Analog Filter: -

Gan:

vV Autorange

Ch 2

&nalag Filter: r‘-—__—]
] ‘]]

Gain:

r

IF Channel Controls

Analog Filter This function selects the 8 MHz, 700 kHz, or 30 kHz
analog bandpass filters in the [F processor.

3-22 E6501A/E6502A/E6503A VXI Receiver User's Guide

Figure 3-21

Gain

Autorange

Tuner Controls

Using the Receiver
Using the Virtual Front Panel

With the Autorange deselected, the analog gain can be set
from 0 dB to 60 dB in 2 dB steps. The analog gain
amplifiers are in the IF processor.

Enables/disables autoranging. Autoranging gain control
allows the receiver to automatically control gain
according to the signal level. In this way, both high- and
low-level signals can be monitored across the entire
search band.

The tuner controls allow you to tune the frequency and set input attenuation
for each IF channel. Each IF channel may control one tuner. It is possible to
have one tuner attached to two [F channels, but not two tuners attached to
one IF channel. Figure 3-21 shows the tuner controls.

Tuner Controls

Tuner Freq:
Attenuation

Step Size

&% Tuner Controls NE
{F Channel 1
Tuner Freq: |20 j MHz

Aftenuation: {0dB -

IF Channel 2
Turer Freq; ﬁ MHz

Ahtenuation: r——_]
StepSize: 10 [kHz]

Sets the tuner frequency in steps defined using the Step
Size function.

Sets the input attenuation from 0 dB to 30 dB in 10 dB
steps.

Sets the frequency step size for the Tune Freq function.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-23

Using the Receiver
Using the Virtual Front Panel

BFO Control

The BFO (beat frequency oscillator) control allows you to introduce a signal
at a known frequency into the detected signal. This function is used
extensively in suppressed carrier forms of demodulation. Figure 3-22 shows
the BFO control.

2R BFO Control {0

Control
& Tuner ¢ Mezz1

1kHz 100Hz 10Hz 1Hz

Fa sy

R B E T LI I R ARt LR N e N T N REaEs]

R R O N R R N EE N TN R TR RN RN RN RERTE TR N RITNART

.....;..........;....”.F‘..........................
;

AR N IR

Figure 3-22 BFO Control

Window Menu The Window Menu shows a list of the currently open windows. This
function allows you to select a window and place it on top for viewing. The
Window menu is shown in Figure 3-23.

EB50x Virtual Front Panel

File Settings Layout Mezzaninel flpen Help

v 1 Spectral Display for Mezzanine 1
2 Mezz. 1 Controls
3 RSS! for Mezzanine 1
4 Search Display for Mezzanine 1

Figure 3-23 Window Menu

3-24 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Using the Driver Software

Programmer’s Block
Diagrams

Note

Mezzanine Data Select
Modes

Command Group
Numbers

Using the Driver Software

The programmer’s block diagrams can be found at the end of this chapter.
These diagrams are intended as an aid when programming the receiver. They
show the mezzanine data select modes for routing data through the IF
processor, as well as the main sections of the IF processor. The main
sections of the IF processor are grouped by number. The commands in
chapter 6 are mapped to these group numbers to help identify the section of
the [F processor that a command is controlling.

The driver software refers to IF channel 1 as IF channel 0, and IF channel 2
as IF channel 1. This is also the logic shown on the programmer’s block
diagrams.

There are four modes for routing the IF channel data. Mode 1 is used when
there are two mezzanines and both receive data from [F channel 1. The
E6501A receiver has one IF channel and one mezzanine. With option 031, a
second mezzanine is added.

Mode 2 is used when there are two mezzanines and both receive data from
IF channe! 2. Since the E6501A receiver does not have an IF channel 2,
mode 2 only applies to the E6502A and E6503A receivers.

Mode 3 is the crossover mode. This mode is used when there are two
mezzanines and utilizes up to five DDCs on each mezzanine. Mode 3 takes
IF channel 1 data and routes it to the first four DDCs on mezzanine 1, and
then to the fifth DDC on mezzanine 2. Similarly, [F channel 2 routes data to
the first four DDCs on mezzanine 2, and then to the fifth DDC on mezzanine
1. This mode is used primarily by the E6503A for direction finding
applications. In this case, IF channel 1 and [F channel 2 data is routed to
mezzanine I, which has two DDCs (standard E6503A configuration).

Mode 4 takes the data from IF channel 1 and routes it to mezzanine | (up to
five DDCs). This mode then takes the data from IF channel 2 and routes it to
mezzanine 2 (up to five DDCs).

The commands are grouped by number: group 0, group 1, group 2, group 3,
group 4, or group 5. Refer to the programmer’s block diagrams and the

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-25

Table 3-7

Maximum FFT Length

Maximum Number of
FFT Processes

Using the Receiver
Using the Driver Software

following table for an explanation of command group numbers and what
they control.

Group Command Numbers

Group Number Description

0 Group 0 commands control the
overall receiver system.

1 Group 1 commands control the
analog filters in the E6404A IF
processor.

2 Group 2 commands control the
ADC(s) in the E6404A IF
processor.

3 Group 3 commands control the
DDC(s) in the E6404A IF
processor.

4 Group 4 commands control the
DSP(s) in the E6404A IF
processor.

5 Group 5 commands control the
link port data and the audio data
in the E6404A IF processor.

The driver software supports a total FFT length of 4096 points for
monitoring processes (monitor and IF pan displays). That is, a total FFT
length for all monitor and IF pan displays for a given mezzanine cannot
exceed 4096 points.

With the DDCs bypassed in search mode, the driver software automatically
sets the FFT length.

Because the receiver performs FFTs, it has discrete resolution bandwidth
settings. Therefore, the lengths of the transform are restricted to powers of
two.

FFT processes refers to any process where FFT data is returned. For
example, search and monitor windows in the VFP each constitute one
process. Each IF pan display in the VFP constitutes one process. The
maximum number of FFT processes that can be run is four. However,
another constraint is the maximum combined FFT length of 4096 points for
all FFT processes. The driver software will not allow the sum of the FFT
processes to exceed a total FFT length of 4096 points, even if fewer than
four processes are currently running.

3-26 E6501A/E6502A/E6503A VXI Receiver User’s Guide

DSP Considerations

Table 3-8

Using the Receiver
Using the Driver Software

There are two loading considerations: serial loading and DSP loading.

Serial Loading

Serial loading is a condition where the period of the frame synchronization
clock is too small to transmit the downconverted data to the DSP. The
amount of information sent by each of the DDCs is determined by the
decimation rate.

To ensure that serial loading does not occur, the DDCs will not introduce too
much data (essentially by restricting bandwidth combinations). Refer to
Table 3-8 to help understand how serial loading is managed in the receiver.

Number of DDCs Versus Maximum Bandwidth

Number of DDCs Maximum Bandwidth (kHz)

1 462
2 187
3 - 83 - o
4 54
5 B -

The information shown in Table 3-8 is relative to data rates and is not related
to the number and types of processes running.

DSP Loading

Unlike serial loading, DSP loading is more subtle and is somewhat
undetectable by the driver and processor. This form of loading is detectable
by the user when performing various tasks such as listening to demodulated
audio.

DSP loading is a function of the intensity of the process being run. There are
several processes that the processor is capable of performing. These
processes along with their relative DSP loading weight are shown in

Table 3-9.

Examples of DSP loading are distorted or no audio, or distorted spectral
displays.

E6501A/EB6502A/E6503A VXI Receiver User's Guide 3-27

Table 3-9

Driver Revision

Default Receiver
Settings

Table 3-10

Opening and Closing
an Instrument Session

Using the Receiver
Using the Driver Software

DSP Processes Versus DSP Loading Weight

Heavy Medium Light
SSB/ISB FM Cw
PM AM

full rate data capture link port I/Q data capture

When using the receiver, these factors should be considered when deciding
how to use the receiver in a given application.

The hpe650x_revision query command will return the revision of the
software driver and the firmware revision of the receiver.

Table 3-10 is a list of the default receiver settings whenever power is cycled
or the hpe650x_reset command is executed.

Default Receiver Settings

Receiver Function Default Setting

IF bandpass filter 8 MHz

meizanine data select 7 1 -
mode

IF gain . N manual/0 dB gain

IF bandwidth 10 kHz 7

tuner 10 MHz reference on

The commands shown in Table 3-11 are required for opening and closing an
instrument session.

3-28 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Using the Receiver
Using the Driver Software

Table 3-11 Commands for Opening and Closing an Instrument Session

Command Description
result= hpe650x_init This command establishes communication with the
(rsrcName, idQuery, resetinstr, pInstrument|D); IF processor.

rsrcName: ensures that the logical address of the IF
processor is correct. This value is typically “vXio : : 43
1 INSTR”.

idQuery: determines if the option string will be read
by the driver. A value of VI_TRUE forces the driver
to thread the option string and enable error checking
based on the results.

resetinstr: determines if the DSP will be reset after
the code is loaded. A value of VI_TRUE will reset
the DSP.

pinstrumentID: is the pointer to the address of
memory allocated for the instrument 1D. All
subsequent commands to the receiver must be
referenced by this instrument I1D.

result= hpe650x_inittFChannel This command initializes the IF channel, establishes
(InstrumentID, IFchan, tuner_attached, communication with the tuner section, and sets
InitialRFFrequency, LO_LogicalAddr, logical addresses of the LO and downconverter(s).
OneGHz_LogicalAddr, ThreeGHz_LogicalAddr); InstrumentID: pointer to the address of memory
allocated for the instrument ID.
IFchan: defines the iF channel to use. A value of 0
corresponds to IF channel 1; a value of 1
corresponds to IF channel 2.
tuner_attached: confirms whether the IF channel is
controlling a tuner. A value of VI_TRUE indicates
that the IF channel is controlling a tuner.
InitialRFFrequency: Sets the initial RF frequency.
LO_LogicalAddr: Sets the logical address of the
LO. The value set at the factory is 41.
OneGHz_LogicalAddr: Sets the logical address of
the 1 GHz downconverter. The value set at the
factory is 42.
ThreeGHz_LogicalAddr: Sets the logical address
of the 3 GHz option 003 downconverter. The value
set at the factory is 40. If your system does not have
a 3 GHz option, this parameter should be set to

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-29

Using the Receiver

Using the Driver Software

Table 3-11 Commands for Opening and Closing an Instrument Session

Command

Description

result= hpe650x_setMezzanineDataSelectMode
(InstrumentiD, mode);

This command selects the mezzanine data select
mode for data routing through the IF processor.
InstrumentID: pointer to the address of memory
allocated for the instrument ID.

mode: selects mode 1, 2, 3, or 4 for data routing
through the IF processor. Refer to “Mezzanine Data
Select Modes” for more information.

result= hpe650x_close
(InstrumentID);

User's controlling program

This command terminates the software connection
to the receiver and de-allocates resources
associated with the receiver.

InstrumentiD: pointer to the address of memory
allocated for the instrument ID.

3-30 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Return Values

Pointers to Memory
Addresses

Receiver
Programming
Examples

Using the Receiver
Using the Driver Software

The E650X receiver functions return a defined value depending on the
outcome of the process. For example, if the function was successful, 0 is
returned. If the function failed, an error in the range of OxFECO0 0000 to
0xFECO FFFF is returned. In other words, a zero corresponds to the
successful execution of the function, while any negative value corresponds
to an etrror condition.

Warnings have values >0 (any positive value). A warning indicates a
non-fatal problem (function succeeded) during the execution of the function
process.

Refer to Chapter 6 for a list of return values.

The success, error, and warning values are the only values returned.
Retrieving actual data, such as IF attenuator setting, tuner frequency, digital
IF bandwidth, etc., is accomplished by using pointers. A pointer is a
parameter that points to the address of allocated memory where the data is
stored. These parameters have the letter “P” somewhere in their data type
name. For example, ViPSession, ViPInt32, and ViPReal64 indicate that their
corresponding parameters are pointers to the location where actual data is
stored. Most commands starting with “get” have at least one pointer to the
location of data.

To set up a search process

The following procedure is the minimum set of calls required to start a
scarch process for IF channel 1. Mezzanine data select mode 1 is the default
mode. Include the hpe650x_setMezzanineDataSelectMode command if
you want to change to a mezzanine data sclect mode other than mode 1.

The user must write a program for retrieving the search data using the
hpe650x getSearchTraceLength and hpe650x_getSearchTrace
commands.

result= hpe650x_init("VXI0 :; 43 : INSTR™. VI_TRUE. VI _TRUE. &InstrumentID):
result=hpe630x initlFChannel(InstrumentID. 0, VI TRUE. 20000000. 41. 42. 40).
result=hpe650x_setSearchMode(InstrumentID. 0);

result— hpe650x_setSearchResolutionBWParameters(InstrumentlD. 0. 0.35.4000);
result=hpe650x_setSearchOutputTraceLength(InstrumentID, 0, 4000):

result= hpe650x_startScarch(InstrumentID. 0);

f
\

/{To Do: Put your program code here to retrieve and process data.

1
!

result= hpe630x_stopScarch(InstrumentID. 0):
result= hpe6350x close(InstrumentID):

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-31

Using the Receiver
Using the Driver Software

Note A complete, fully functional C* search application, with source code and a
graphical user interface, is available on the Internet at:

http://wwwdb.tm.agilent.com/cgi-bin/DSP/tmoArsenal.cgi?FP=productArsenal& Areca=Datas
heet& Template=overview& Tid=HPE6501 A& Language=English&model no=HP+E6501A

3-32 E6501A/E6502A/E6503A VXI Receiver User's Guide

Note

Using the Receiver
Using the Driver Software

To set up an FFT measurement

The following procedure is an example of calls to set up an FFT
measurement for [F channel 1. Mezzanine data select mode 1 is the default
mode. Include the hpe650x_setMezzanineDataSelectMode command if
you want to change to a mezzanine data select mode other than mode 1.

The user must write a program for retrieving the FFT data using the
hpe650x_getTraceLength and hpe650x_getFFTTrace commands.

result hpe6350x_init("VXIO0 : : 43 : : INSTR™. VI_TRUL. VI_TRUE. &InstrumentID):
result= hpe6350x_initlFChannel(InstrumentID, 0. VI TRUE, 20000000, 41. 42_ 40).
result=hpe650x setMonitoringMode(InstrumentID, 0);

result— hpe630x_setAnalogFilter(InstrumentID. 0, 0);

result— hpe630x_activateAutoranging(InstrumentID, 0);

result=hpe630x setFFTDDCNumber(InstrumentID, 0, 0, 4):

result— hpe650x_setFFTLength(InstrumentID, 0. 0. 4096);

result— hpe630x_setFFTAverages(InstrumentID, 0, 0. 10):

result=hpe650x setFFTWindowType(InstrumentID. 0. 0. 0):

result= hpe650x_setReturnAlIFF IData(InstrumentID, 0, 0, 0):

result— hpe630x_setTunerFrequency(InstrumentID, 0. 20000000):

result= hpe650x setDDCFrequency(InstrumentID. 0, 0, 20000000);

result= hpe630x_startFFT(InstrumentID, 0. 0):

i
1

//To Do: Put your program code here to retricve and process data.

1
i

result= hpe630x_stopFFT(InstrumentID. 0. 0):
result= hpe650x close(InstrumentID);

A complete, fully functional C*™ search application, with source code and a
graphical user interface, is available on the Internet at:

http://wwwdb.tm.agilent.com/cgi-bin/DSP/tmoArsenal.cgi?FP=productArsenal& Arca=Datas
heet& Template=overview& Tid=HPE63501 A& Language=English&model no=HP+LE6501A

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-33

Using the Receiver
Using the Driver Software

To change tuner frequency

The following procedure is an example of how to change the tuner frequency
for the TF channel 1 tuner from the initial 20 MHz specified in the
hpe650x_initIFChannel command to 40 MHz. Mezzanine data select mode
1 is the default mode. Include the hpe650x_setMezzanineDataSelectMode
command if you want to change to a mezzanine data select mode other than
mode 1.

result - hpe630x init("VXI0 : : 43 . . INSTR™. VI TRUE. VI_TRUE, &InstrumentID}:
result= hpe630x initlFChannel(TnstrumentID. 0, VI_TRUE, 20000000, 41. 42, 40);
result— hpe650x_setMonitoringMode(InstrumentID. 0);

result= hpe630x setTunerFrequency(InstrumentID. 0. 40000000):

result= hpe650x_close(InstrumentlD):

To change the IF bandpass filter setting

The following procedure is an example of how to change the IF bandpass
filter for IF channel 1 from the default value of 8 MHz to 700 kHz. Note that
the index to the array of valid IF bandwidths is as follows:

0=30kHz
1 =700 kHz
2=8 MHz

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result hpe650x init("VXI0 02 43 0 INSTR™. VI TRUL, VI TRUE. &InstrumentlD):
result=hpe630x_initIFChannel(Instrument1D. 0. V1 TRUE. 20000000, 41. 42 40):
result- hpe650x setMonitoringMode(InstrumentID. 0):

result= hpeo30x setAnaloghilter(InstrumentID 0. 1):

result hpe630x close(Instrumenti):

3-34 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Note

Table 3-12

Using the Receiver
Using the Driver Software

To set the IF gain

The following procedure is an example of how to change the IF gain for IF
channel 1 from autoranging to a fixed gain. Refer to Table 3-12 for the index
number (in parenthesis) that corresponds to the desired input range setting.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

The dBm numbers in Table 3-12 correspond to the maximum recommended
input level for a given gain setting. IF gain will be maximized at index 60
(-48 dBm), while IF attenuation will be maximized at index 0 (12 dBm).
Due to input amplifier distortion, applying power levels greater than 0 dBm
into the 1FP is not recommended.

Index to Input Range Settings

(0) 12 dBm (16) -4 dBm (32) -20dBm (48) -36 dBm

2 10dBm (18) -6dBm (34) -22dBm (50) -38 dBm

4) 8dBm (20) -8dBm (36) -24dBm (52) -40dBm

®) 6 dBm (22) -10 dBm (38) -26 dBm (54) -42 dBm

®) 4dBm (24) -12dBm (40) -28dBm (56) -44 dBm
(10) 2dBm (26) -14dBm (42) -30dBm (58) -46 dBm

(12) 0dBm (28) -16dBm (44) -32dBm (60) -48 dBm

(14) 2dBm (30) -18dBm (46) -34dBm

result= hpe630x_init("VXI0 1 : 43 : 1 INSTR™. VI TRUE. VI TRUE. &InstrumentID):
result hpe630x initlFChannel{InstrumentID. 0, VI_TRUE. 20000000. 41.42_40):
result=hpe6350x setMonitoringMode(Instrumentll. 0):

result— hpeG350x_setlFGain(InstrumentiD. 0.10):

result— hpe650x_close(InstrumentlD):

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-35

Using the Receiver
Using the Driver Software

To set tuner input attenuation

The following procedure is an example of how to change the tuner input
attenuation for IF channel | to 30 dB. Mezzanine data select mode | is the
default mode. Include the hpe650x_setMezzanineDataSelectMode
command if you want to change to a mezzanine data select mode other than
mode 1.

result-- hpe650x_init("VXI0 : : 43 : : INSTR™, VI_ TRUE. VI_TRUL, &InstrumentID);
result= hpe630x initIFChannel(InstrumentID. 0, VI_TRUE. 20000000. 41. 42, 40);
result= hpe630x_setMonitoringMode(InstrumentID, 0);

result - hpe630x_setTunerAttenuation{ InstrumentID, 0. 30):

result= hpe630x_close(InstrumentID):

To set search mode resolution bandwidth

The following procedure is an example ot how to change the search mode
resolution bandwidth for [F channel | to 462 kHz.

Mezzanine data sclect mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result hpe630x_init(C"VXI0 :: 43 INSTR™. VI TRUE, VI TRUE, &InstrumentID):
result= hipe630x initlFChannel(InstrumentID. 0. VI_TRUE, 20000000, 41. 42. 40):
result=hpe630x_setMonitoringMode(InstrumentID. 0):

result= ipe630x setSearchResolutionBWParameters(InstrumentID, 0. 0.35.8000):

result— hpe6s0x close(InstrumentID):

To set span in monitor mode

The following procedure is an example of how to change the monitor mode
span for IF channel 1 to 25 kHz. The span is equal to the digital (DDC) IF
bandwidth setting (247 Hz to 462 kilz). Refer to Table 3-2 for the
bandwidth index numbers.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change

to a mezzanine data select mode other than mode 1.
result— hpe630x_init{"VXIO : : 43 1 : INSTR™, VI TRUE. VI TRUE. &lInstrumentlD):
result=hpe630x initlFChannel(InstrumentID, 0. VI_TRUE, 20000000. 41. 42 40):

result— hpe650x_setMonitoringMode(InstrumentID. 0):
result= hpe6S0x setDigitalllFBandw idth(Instrument1D. 0. 12):

result= hpe650x close(InstrumentID):

3-36 E6501A/E6502A/E6503A VX! Receiver User's Guide

Using the Receiver
Using the Driver Software

To set mezzanine data select mode

The following procedure is an example of how to change the mezzanine data
select mode so that data is routed to all DDCs. The default is mode 1.

result— hpe630x init("VXI0 : : 43 : : INSTR™. VI_TRUE, VI_TRUE. &InstrumentID):
result= hpe650x initlFChannel(InstrumentID, 0, VI_TRUE, 20000000, 41, 42, 40);
result= hpe630x_setMonitoringMode(InstrumentlD. 0):

result— hpe650x_setMezzanineDataSclectMode(InstrumentID, 4);

result— hpe630x close(InstrumentID):

To turn the tuner 10 MHz reference off

The following procedure is an example of how to turn off the 10 MHz
reference for the IF channel 1 tuner. The default is on. A value of 0 indicates
that an external source will be used.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result= hpe6S0x_init("VXI0 : : 43 1 INSTR”. VI_TRUE. VI TRUE. &InstrumentID):
result= hpe650x_initIFChannel(Instrumentl1). 0. VI TRUE, 20000000, 41. 42. 40):
result= hpe650x setMomitoringMode(InstrumentID, 0);

result= hpe630x selectTuner 1 0MIIzReference(InstrumentlD). 0. 0):

result=hpe650x_close(InstrumentlD):

To turn the IF processor 10 MHz reference on

The following procedure is an example of how to turn on the 10 MHz
reference in the 1F processor. The default is off.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result=hpe650x_init("VXIO : 0 43 0 INSTR™. VI TRUE. VI TRUE. &InstrumentID):

result- hpe650x initlFChannel(InstrumentID, 0. VI_TRUE. 20000000, 41. 42_40):

result= hipe630x setMonitoringMode(InstrumentID. 0);
result= hpe650x_setlFF 10MHzReterenceOut(InstrumentID, enable):

result— hpe630x_close(InstrumentiD):

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-37

Using the Receiver
Using the Driver Software

To activate automatic frequency control

The following procedure is an example of how to activate automatic
frequency control for DDC 0 on the mezzanine in IF channel 1.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result— hpe6350x_init("VXI0 : : 43 . INSTR™. VI_TRUE. VI_TRUE. &Instrumentl):
result= hpe650x_initIFChannel(InstrumentIl). 0. VI TRUE. 20000000, 41. 42. 40):
result= hpe650x_setMonitoringMode(InstrumentID. 0):

result— hpe650x_activate AFC(Instrument1D, 0. 0):

result— hpe650x _close(Instrument1D):

To lock autoranging

The following procedure is an example of how to lock autoranging for IF
channel 1. This function is useful when performing any process where gain
changes are not desirable.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result= hpedS0x init("VXI0 - : 43 . INSTR™. VI_TRUE. VI TRUE, &InstrumentID):

result= hpe630x_initIFChannel(InstrumentlD, 0. VI TRUE, 20000000, 41. 42. 40):

result- hpe650x setMonitoringMode(InstrumentID. 0):
result=hpe6350x_setAutorangeLock(InstrumentID. 0. VI TRULL. VI FALSE.5):

result= hpe630x close(InstrumentID):

To set up dynamic range optimization

The following procedure is an example of how to set up dynamic range
optimization (DRO) for IF channel 1.

DRO works in conjunction with the autoranging gain to optimize the
receiver’s dynamic range. Autoranging maintains the optimum level at the
ADC, while DRO maintains the optimum level at the DDC input. The DRO
uses a window comparator to monitor the peak composite signal in the
analog passband. To avoid responding to momentary fluctuations in signal
amplitudes, the attack and decay commands are used. When the peak signal
level increases above the upper threshold of the window and remains there
for a time equal to the DRO attack time setting, the DRO immediately
re-optimizes the correction RAM. Conversely, when the peak signal level
decreases below the lower threshold of the window and remains there for a
time equal to the DRO decay time setting, the DRO re-optimizes the
correction RAM.

Refer to Chapter 4 for a complete explanation of the attack and decay
response times of the DRO.

3-38 E6501A/E6502A/E6503A VX! Receiver User's Guide

Using the Receiver
Using the Driver Software

The response times that can be set are 500 psec to 1 sec, which are set by
passing in units between 2 and 2000. A value of 2000 equals | sec
(approximately). One time unit is approximately 500 ;sec.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result- hpe6S0x_init("VXI0 :: 43 : : INSTR™. VI_TRUE. VI_TRUEL. &InstrumentID):
result— hpe630x initIFChannel(InstrumentID. 0, VI_TRUE. 20000000. 41, 42 40):
resubt= hpe630x setMonitoringMode(InstrumentID, 0):

result— hpe630x_setDROAttack Time(InstrumentID. 0. 1):

result= hpe630x sctDRODecay Time(InstrumentID. 0. 1000):

result= hpe050x_close(InstrumentlD):

To set up a channelized power measurement

The following procedure is an example of how to set up a channelized power
measurement using the received signal strength indication (RSSI) function
for DDC 1 in IF channel 1.

The user must write a program for retrieving the RSSI value using the
hpe650x_getRSSIvalue command.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result hpe630x init("VXIO : : 43 0 INSTR™. VI TRUE. VI TRUE. &InstrumentID)):
result= hipe630x initIFChannel(InstrumentID. 0. VI_TRUE. 20000000. 41. 42, 40):
result= hpe630x setMonitoringMode(Instrumentil). 0):

result hpe630x sctRSSIMeasTime(InstrumentID. 0. 10):

result= hpe630x setDDCFrequency(InstrumentID, 0. 0. 1. 20000000):

result= hpe630x_startRSSI(InstrumentllD. 0. 0):

‘
i

//To Do: Put your program code here to retrieve and process data

1
j

result hpe630x_stopRSSI(InstrumentID. 0. 0):
result= hpe630x close(InstrumentID):

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-39

Using the Receiver
Using the Driver Software

To set up and start a monitor process

The following procedure is an example of how to set up a monitor process
for IF channel 1 with a center frequency of 100 MHz and a span of 8 MHz
(full span). Note that the full span setting is a special case. Full span is
selected by setting the DDCnum parameter in the

hpe650x _setFFTDDCNumber command to 5 for DDC number 5.

The user must write a program for retrieving the FFT data using the
hpe650x_getTraceLength and hpe650x_getFFTTrace commands.

Mezzanine data select mode | is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data sclect mode other than mode 1.

result= hpe630x_init("VXI0 : : 43 01 INSTR™, VI TRUL. VI_TRUE. &nstrumentID):
result=hpe630x_initIFChannel(InstrumentID, 0. VI_TRUE. 20000000. 41, 42. 40):
result— hpe650x_setMonitoringMode(InstrumentID. 0):

result— hpe630x_sctFFTDDCNumber(InstrumentiD. 0. 0. 5);

result= hpe650x_setFFTPostDemod(InstrumentID, 0, 0. 0):

result= hpe650x_setFFTLength(InstrumentID, 0, 0. 4096):

result— hpe650x sctFFTAverages(InstrumentID, 0. 0. 1);

result= hpe650x_setFFTWindowType(InstrumentlD. 0, 0. 0):

result= hpe630x setReturn AIIFFTData(InstrumentID. 0. 0. 0):

result— hpeo30x setTunerFrequency(InstrumentID, 0. 100000000):

result= hpe650x_setDDCFrequency(InstrumentlD, 0, 0. 100000000):

result= hpe630x_startFFT(InstrumentID. 0. 0):

i
\

//To Do: Put your program code here to retrieve and process data.

1
i

result hpe650x stoplFT(InstrumentID. 0. 0):
result— hpe630x _close(InstrumentID):

Note A complete, fully functional C*" search application, with source code and a
graphical user interface, is available on the Internet at:

http://wwwdb.tm agilent.com/cgi-bin/DSP/tmoArsenal.cgi?FP=productArsenal& Arca=Datas
heet& Template=overview& Tid=HPE6501 A&lLanguage=English&model no=HP+E63501A

3-40 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Using the Driver Software

To set up demodulation, turn on an audio channel, and set
squelch

The following procedure is an example of how to set up FM demodulation
on a 100 MHz signal for DDC | and DAC 1 in IF channel 1, and listen to the
signal.

Mezzanine data select mode 1 is the default mode. Include the
hpe650x_setMezzanineDataSelectMode command if you want to change
to a mezzanine data select mode other than mode 1.

result= hpe650x_init("VXIO0 : : 43 : - INSTR™, VI_TRUE. VI_TRUE, &InstrumentID):
result— hpe6350x_initlFChannel(InstrumentID. 0. VI_TRUE, 100000000, 41. 42, 40):
result= hpe630x_setMonitoringMode(InstrumentID, 0);

result= hpe630x_setDemod Ivpe(InstrumentID. 0. 0, 0);

result- hpe630x_ sctDigital[FBandwidth(InstrumentID. 0. 36):

result— hpe650x turnOnAudioChannel(InstrumentiD, 0, 0. 0):

result— hpe6350x_setVolumel.evel(InstrumentID. 0. 0. 50):

result= hpe6350x setSquelchLevel(TnstrumentlD, 0, 20):

result= hpe6350x_setSquelchState(InstrumentID. 0, VI_TRUE);

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-41

Using the Receiver
Using the Driver Software

Multi-Threading This example shows a code sample of a search based application that is

Considerations implemented using multi-threading. It is important to note how thread
blocking is implemented in this example to illustrate how to avoid issues of
updating parameters while a search session is active and attempting to send
and receive data simultaneously via the VISA library.

The code is taken from a Windows N"I® and Microsoft® Foundations Class
(MFC) based sample application.

The constructor below establishes a hpe650x session, and sets some of the
initial search parameters.

CSecarchSampleView::CSearchSampleView()
: CFormView(CSearchSampleView:: 1IDD)

i
1

ViStatus result:

H{IAFX DATA_INIT(CSecarchSampleView)
m start = _T("800.0007):

m_stop = _1(900.0007):

m_resbw = T 20.898"):

I VAFX_DATA_INIT

inf start - 800EG: /7 Check out the cellular band
mf stop = 900L6:

mb _havetrace — false:

mb _lock = false:
mb running = false:
mb_restart - false:

mi_resbw 5. // Res BW set using an index to an enumerated list
// Start the session with a bunch of defaulted parameters. ..

result — hpe630x_init{ TFProcessorADDR. 1. 1. &mysession):

if(IsErr(result)) DoErrorMessage(result):

result — hpe630x initlFChannel(mysession. 0. 1. 20000000. LOADDR.
ONEGHZADDR, THREEGIIZADDR):

If(IsErr(result)) DoErrorMessage(result):

result hpe030x sctSearchMode(mysession. MEZZANINE):
H(IsErr(result)) DoErrorMessage(result):

result - hpe630x activateAwtoranging(mysession, [FCHANNLL):
result — hpe630x setSearchType(mysession. MEZZANINE. DSPDECIMATION):
result — hpe630x_setSearchOutput Tracelength(mysession. MEZZANINE.
SEARCHLENGTH):
resuit = hpe630x_setSearchResofutionBW(mysession. MEZZANINL.
mi_resbw):
result — hpe630x setSearchSpan(mysession. MEZZANINE. mf start.
mi_stop):

3-42 EB501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Using the Driver Software

This UT service event starts the worker-thread to begin searching.

void CSearchSampleView::OnGo()
I
1

it(fmb_running)
1]
1

mb_running - true:

AfxBeginThread(ProcessScarchData. this);

1
|

]

§
/i The following function is called as a worker-thread to provide

/I search data services.
i

/' The IpParam passed in is a reference to the CScarchSampleView object to it

// can refer to member variables

UINT ProcessSearchData(LPVOID IpParam)

/
1

CSecarchSampleView *theView = (CSearchSampleView*) IpParam:

ViStatus result;
ViRealo4 amplitudes| 8192]. trash[8192]:

/i Set the process lock on
theView-=mb_lock — true:

// Fire up the search

result - hpe630x_startScarch(theView->mysession. MEZZANINE):

Sleep(500): 7/ Let the DSP get going before burdening it with a call for data

do

(
1

result = hipe630x_petSearchTrace(theView-mysession.
MEZZANINE. amplitudes. trash):

/ Draw only if successtul results..
if('theView-=IsErr(result))

theView-+DrawSearchTrace(SEARCHLENGTH. amplitudes):

Sleep(TRACEDELAY): // Give up a few clock cyeles
v while(theView-=mb_running); // Did someone want us to quit?
result = hpe630x_stopSearch(theView->mysession. MEZZANINE):

// Release the process lock
theView->mb lock — false:
return 02

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-43

Using the Receiver
Using the Driver Software

This Ul service event shows changing resolution bandwidth based on the

user's interaction with a control. Notice that before actually changing the

value on the hardware, the search worker-thread is blocked, then restarted
once the value is changed.

void CSearchSampleView::OnDeltaposSpinresbw(NMHDR* pNMIIDR. LRESULT* pResult)

I
t

ViReal6d bandwidih:
char buffer| 12}

NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR:

it hir = pNMUpDown-=iDelta:
int resbw — mi_resbw - dir;

/f Make sure we stay within the possible enumerated resolution bandwidths.
if(resbw <20 resbw > 33)

resbw = mi resbw:

mi_resbw — resbw:
BlockWorkerThread():

ViStatus result = hpe630x_setScarchResolutionBW(mysession. MEZZANINE,
mi_resbw):

result = hpe630x_getSearchResolutionBW(mysession. MEZZANINE. &bandwidth):

RestartWorker Thread():

sprintf(bufter. “°u7.31". (float) bandwidth / [E3): // Show in kHz
SetDlgltemText(IDC RESBW. (LPCTSTR) buffer):

*pResult — 0:

3-44 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Using the Receiver
Using the Driver Software

Here is an example of one possible implementation of thread service

handling for search.

void CSearchSampleView::BlockWorker Thread()
{
if(mb_running)
{
mb_running — false:
mb restart = truc:
while(mb tock)
Sleep(1):

1l
i

void CSearchSampleView::RestartWorkerThread()

/
1

if(mb_restart)

)

Ll
mb lock - false:
mb_restart = false:

mb_running = true:

AfxBeginThread(ProcessSearchData. this):

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-45

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Note

Hardware
Configuration

Synchronizing Multiple IF Processors and
Capturing Data

Data synchronization may be broken into two large categories: hardware
configuration and software configuration. The synchronization process is
closely coupled to the capture process. That is, usually synchronization will
be performed before trying to capture data. For the modules to participate in
a synchronous group, they must be configured to do so. There are two places
that the modules must be configured: the hardwarc switches located on the
VXI modules, and the software.

During normal receiver operation, synchronization is not needed. This
functionality is provided only for those users that require a coherent
multi-channel configuration.

To synchronize multiple [F processors, the switches located on the IF
processor module must be set to allow the incoming trigger to be
propagated. Refer to Figure 3-24. Also, refer to “Local Bus Compatibility”
in Chapter 2.

Module Role Switch Setting

012345

I
Master Left-Most Module
aster FRPE

012345

I Y
Servant - intermediate Module(s)
(Un-buffered Sync Rx) D D U D D D

012345

I
Servant - Buffered Intermediate Module
(Buffered Sync Rx) D u D n D E

— &
— o

Servant Right-Most Modute

(Terminal Sync Rx)

|}
| |
[
| |
[|
| |

ARSI

Sole Module Uuuﬂ E
Notes 1= D 0= E
On Off

Figure 3-24 Hardware Configuration

3-46 E6501A/E6502A/E6503A VXI Receiver User's Guide

Software
Configuration

Note

Note

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

The switches are located on the side of the module closest to and in between
the VXI bus connectors (Local Bus Switch).

The master IF processor must be the left-most module in the configuration.
Note that the tuner modules are not shown because their location is not
critical in the configuration. However, all IF modulesmust be installed in the
VXI mainframe as a contiguous group. In addition, any VXI modules
installed adjacent to IF processors configured for local bus operation must be
configured for no local bus operation.

Note the different switch setting between the servant modules that are
simply passing the trigger, and the final servant module in the chain.

Also, note that for a single module to be synchronized (that is, both
mezzanines have their DDCs synchronized), the switches must be set as
shown in the “Sole Module” configuration in Figure 3-24.

Once the hardware is configured correctly, the first step to configuring the
software is establishing a trigger. The trigger source may be either a
hardware trigger or software trigger.

Data capture requires software and hardware triggering as described below.

Software Trigger

Software triggering is defined as being able to synchronize events using only
the equipment shipped with the system. An external system is not required to
accomplish these tasks.

For software triggering, only synchronizing the DDCs is supported.
Currently, there is no way to perform synchronous data collection or to have
the DSPs from more than one mezzanine participate in a synchronous event
using only software.

Hardware Trigger

This form of synchronization consists of having an external system provide a
trigger to the master IF processor.

The controlling computer does not have a way of knowing precisely when
the trigger occurs. Therefore, the system designer must take into account a
mechanism for knowing when the trigger happened. If commands are sent to
any modules in the group, the driver cannot determine if sending the
command will invalidate the capture setup.

E6501A/E6502A/E6503A VXI Recelver User's Guide 3-47

Note

Note

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Getting synchronous data occurs in three steps. First, the master's clock
needs to be distributed to each servant module; next, the DDCs need to be
synchronized, and finally, the data collection process needs to be
started/stopped. The discussion that follows assumes the modules have been
configured properly.

Distributing Clocks

Distributing one module's clock (the master IF) is accomplished by first
designating the module as the master (issuing the
hpe650x_setMasterIFClock command), then telling the module to set its
clock destination to the VXI back-plane (issuing the
hpe650x_selectBackplaneFs command).

Once the master module has been specitfied, and its clock has been
distributed to the back-plane, the servant modules need to be specified
(issuing the hpe650x_setSlavelF command), telling each module to set its
source to the VXI back-plane (hpe650x_selectBackplaneFs command), and
finally issuing a system reset command (hpe650x_hardSystemReset
command).

The importance of issuing the specified commands in the sequence they
appear cannot be overemphasized. If the commands are not sent in the order
specified, system stability cannot be guaranteed.

The hpe650x_hardSystemReset and hpc650x_reset commands are not the
same and should not be substituted for one another. After issuing the
hpe650x _hardSystemReset command on an I processor, that module must
be completely re-initialized

Synchronizing the DDCs

For a given configuration, the IF processors need to have some designations.
That is, one IF processor per group needs to be designated as the master,
while the remaining modules need to be designated servants. In this way, the
command flow will be different to each IF processor depending on whether
the module has been designated the master or servant.

In terms of synchronizing the DDCs, the reason a master needs to be
selected is primarily for hardware triggering of the DDCs. As for the
software triggering scenario, the order in which the commands are sent is not
critical. However, for consistency, the master should be issued the first
command.

3-48 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

When hardware triggering the DDCs, once the command has been issued to
prepare to synchronize the last servant, then the next step in the process is to
generate a trigger. [t is important to realize that the E650X receiver does not
have a way to detect when the trigger has occurred. When issuing a
“hardware prepare to synchronize” trigger to the modules, once the final
module in the group has been issued the command, the user/programmer is
responsible for signaling the system that the E650X is ready for a trigger to
be asserted.

Once the DDCs are synchronous, either by establishing a hardware trigger,
or issuing a software trigger, it is imperative that no commands that will
cause the DDCs to reset be sent to the IF processor. It is the programmer's
responsibility to ensure that no commands are sent to the system that will
interrupt the data stream. Examples of commands that will interrupt the data
stream are the hpe650x_setDDCFrequency and
hpe650x_setTunerFrequency.

From a procedural standpoint, the best solution is to set up the data paths,
tune the RF section, adjust the IF processors as necessary, then synchronize
the DDCs.

If hardware synchronization is chosen, and the user/programmer selects not
to have the DDCs synchronous any longer (or decides to abort the process
because of an invalid equipment setting), no command needs to be sent to
the system. That is, the user may operate the equipment as before.

Arming the DSP

The methodology for arming the DSPs for data collection is similar to
synchronizing the DDCs. Arming the DSP for data collection is really a two
stage process. In the first stage, the user/programmer needs to designate
what the DSP will do when the trigger arrives. This can be specitied by
setting the “capture” commands with the suspended value equal to true. That
is, the capture commands are set up as before. However, the suspended value
should be set to true. Setting the suspended value to true informs the DSP
that the capture process should be done when the trigger arrives.

Currently, the way to arm the DSP is through a hardware trigger fed into the
front panel connector. If the user wishes to be able to programmatically
trigger the DSP, it may be possible to use the VXI Trigger Out connector on
the slot zero controller.

The DSP does not have to have the DDCs synchronized before it is armed.
However, if the user wishes to collect synchronous data, then they must first
synchronize the DDCs.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-49

Note

Captured Data Format

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Arming the DSP is a system level command. This means that when the
command to arm the DSPs is sent, then no other commands should be sent to
the IF processor. From the driver's perspective, not every command
communicates with the IF processor. However, to be safe, no commands
should be sent to the driver once the arm DSP commands have been issued,
unless the user wishes to abort the process.

Locking Autorange

In capture/triggering scenarios, it is desirable to prevent the IF processors
from autoranging. More importantly, it is desirable to have each of the IF
processors utilizing the same correction values. This can be accomplished by
turning off the autorange on all modules, gather the correction values from
the master module, and setting each of the servant modules to use the same
correction values.

Whether being retrieved from SRAM (over the VXI bus) or from the link
ports, the data returning from the receiver is interleaved. The interleaving
schemes are described in this section.

Correcting Captured Data

In general, the programmer must remember to appropriately interpret the
results. It is important to note that the full scale of the ADC ranges from
minus 1 volt to plus | volt, for a peak-to-peak range of 2 volts. Also note that
attenuation and gain have been introduced by autoranging or dynamic range
optimization.

To convert captured data to instantaneous input voltage, captured data must
be multiplied by the result of hpe650x_getDataCorrectionValue. When
using this command, autoranging must be locked throughout the time during
which data is taken and the correction value is queried. Otherwise, an
erroneous data correction value may be returned because of range changes
between the time the data is captured and the time the correction value is
queried.

3-50 EB6501A/E6502A/E6503A VXI Receiver User’s Guide

Table 3-13

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

1/Q Data From the Link Ports

When 1[/Q data is output from the link port, the data is in signed 16-bit
integer format (Int16) in which two words are arranged as shown in Table
3-13. The return data is a 32-bit long word, with 16 bits of | data in the upper
word and 16 bits of Q data in the lower word.

1/Q Data Output from Link Ports

Bits 31 through 16 Bits 15 through 0

DDC1 1[0] DDC1 QO]

ﬁ:iawifoﬂ]? - DDC3 Q[0]
bDCM[O]— ~ DDC4 Q[or]fiﬂ
DDC5 1[0] DDC5 Q[0] B
DDCH I[1] ~ pDCt Q[1]

DDC2 1[1'} - ~ ppczaH]) 7
DDC”3I[1]77 ~ DDC3 Q[1']77W
DDC41[1] Dmf

DDC5 I1] DDC5 Q7[1]7 N
DDCWM ' DDCH1 Q[r}-ﬂim

DDC2 In-1] - DDCZVQ[n—1] -
DDC3 1[5-1] . DDC3 Q[n-1] ' 7
DDC4 '|7[n-1] ~ Dbcs Q[n—71]

DDC5 I[n-1] DDC5 QIn-1] -

For example, if DDC1, 2, and 4 are activated, and 1/Q data is being captured
and output to the link port, then there will be 3 xn 32-bit words output from
the link port for that mezzanine. The first long word received is for DDCI,
the next long word is for DDC 2, the next for DDC 4.

1/Q Data From SRAM over VXI

When 1/Q data is stored in SRAM, it must be retrieved via the V X1 interface.
The driver separates the | and Q data into two separate type Int16 arrays (one
for | and one for Q) and then returns the data. This interleaving format is
described in Table 3-14. This is accomplished by using the

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-51

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

hpe650x_getCaptureDigitallQData command. For an example, see the
Scenario 1 sample code.

Table 3-14 1/Q Data Output from SRAM via VXI

From | Data Parameter From Q Data Parameter
DDC1 1[0] DDC1 Q[O0]

DDC2 1[0] 7 o DDC2 Q0]

DGC:QT[O] - ~ ppcsqu] -
DDC4 [0] DDC4 Q[O]

DDC5 0] - pocsal
VDiDCV17I7t1] - DDCV17 Q[1] -

DDC2 I[1] DDC2 Q1]

DDC3I[1] ~ DDC3 Q])
DDC4 I[1] ~ DDC4 Q[ﬁ

DDC5 i[ij o DDC5 Q[1] 7
DDC1 1] © pDC1Qmn]

DDC2 I[n-1] - DDC2 Q[n-1] N
DDC3 I[n-1] - Dbrcerr['n;ﬂ a

DDC4 I[nj1“]~ DDC4 Q[n-1]

DDCS5 I[n-1] DDC5 Q[n-1] -

ADC Data (Full Span) from the Link Ports

These samples are in offset binary format (unsigned 16-bit integers. UInt16).
To restorc a sample to its original 2’s complement (signed integer, Int16)
format, 32k (32 x 1024) must be subtracted from each sample.

The link port ADC data is sent as a total of four 16-bit words of ADC data
returned in two 32-bit words. Note that both link ports (four bits each) are
required to interface the E6404A and third party SHARC DSP chips. The
data are arranged as shown in Table 3-15. Also note that ADC data contains
a large scale dither signal, if it has not been disabled.

3-52 E6501A/E6502A/E6503A VXI Receiver User's Guide

Table 3-15

Table 3-16

See Figure 3-5 to understand the architecture associated with full rate

transfers.

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Full Rate ADC Data Output from Link Ports

Bits 31 through 16

Bits 15 through 0

ADC sample [1]

ADC sample [3]

ADC sample [5]

ADC sample [7]

ADC sample [0}
ADC sample [2]

ADC sample [n-3]

ADC sample [n-1]

ADC sample [4]

ADC sample [6]

ADC sample [n-4]

ADC sample [n-2]

ADC Data (Full Span) from SRAM ADC Data

When I/Q data is stored in SRAM, it must be retrieved via the VXI interface
using the hpe650x_getCaptureFullRateADCData command. This data is

retrieved from SRAM by the driver as a vector of signed 16-bit integer

values (Int16). Also note that ADC data contains a large scale dither signal,
if it has not been disabled. The format is shown in Table 3-16. For an

example, see the Scenario 14 sample code.

Full Rate ADC Data Output from SRAM via VXI

Data Parameter

ADC sample [0]

ADC sample [1]

ADC sample [2]

ADC sample [n-2]

ADC sample [n-1]

E6501A/E6502A/E6503A VXI Receiver User's Guide

3-53

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

MatLab Example

Some sample Matlab code for producing an FFT spectrum of ADC data is
shown below, followed by typical displays of the waveforms.

fid—fopen(‘siggen2.txtdata™.r") %anote that siggen?.txtdata had the correction factor applied

test fscanf(fid™og . [1.248]):

siglen -length(test);

figure(1)

plot(test) ®otime domain

figure(2)

test=2*(test. *hanning(siglen)’): %» correction tactor for single sinusoid in middle of hanning window is 2
plot(test) %time domtain with hanning window

figure(3)

plot(20*log 0 abs(fft(test)/siglen)))

max(20*log 1 0(abs(ftt(test)/siglen)))+ 3 % since two tones need to ad 3 dB to get input signal peak value

L = {0 X
Fis Edt Window - Help

_0(02 1 1 I i
o

500 1000 1500 2000 2500

ADC data in time domain for “figure (1)” as viewed by Matlab program

3-54 E6501A/E6502A/E6503A VX! Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

] Figure Mo. 2 Mi=1E3
Fle Edt Window Hebp

0.04

0.03
002+

0.01

-0:.01

-0.02

2500

.03
0

ADC data in time domain with Hanning window for “figure (2)”

[TIFigure No. 3
Fle Edt . Window: Help

40 — . .

420]

140 :

ADC data in frequency domain with Hanning window and all correction
Jfactors for “figure (3)"

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-55

Sending Indefinite
Samples

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Capturing indefinite samples is a special case that offers additional
flexibility to the user. However, sending indefinite samples has different
meaning depending on the context (full rate data, or I/Q and whether or not
the data is first captured into SRAM).

In general, sending indefinite samples when capturing 1/Q data will have
different meanings depending on if the data is stored in SRAM or not. If the
data is to be captured in SRAM (not streamed out the link ports), then
sending indefinite samples will cause the DSP to continually write over the
SRAM values in a FIFO fashion.

If the data is sent to the link port (not stored in SRAM), then sending
indefinite samples will cause the capture process to run until a “stop capture”
command is sent.

In all cases, the data is retrieved from the DSP in 32 bit, unsigned integer
format (ViUInt32).

3-56 EB6501A/E6502A/E6503A VXI Receiver User’s Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Data Collection This section provides programming examples for data collection processes.

Programming In addition, this section provides a methodology for finding the data
collection programming example that is specific to your task. Currently,

Examples there are 15 possible data collection scenarios, as shown in Figure 3-25.

Data
Collection

Digital ADC
1/Q or ADC
?

Digital I/Q

SRAM
or
Link Port

SRAM Link Port

Link Port

dW
Samples

or indefinite
?

Indefinite

Scenario #10

Triggered
?

Scenario #15
No
Scenario #14

indefinite

Samples
or Indefinite

NG

Triggered
?

Yes

Scenario #11

Yes

indefinite

Triggered
?
Yes

Scenario #13

No

Samples
or Indefinite,
2

Single
or Muitiple
2

Single

Multiple

Triggered
?

Yes

Triggered
?

Yes

Single
or Multiple
?

Single

Multiple

Figure 3-25 Data Collection Scenario Flow Chart

First, find the scenario number that corresponds to your specific task using
the flow chart in Figure 3-25. Then, refer to the corresponding programming
example in this section. A tabular version of Figure 3-25 is shown in the
Table 3-17.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-57

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

Table 3-17 Data Collection Scenarios
Capture_: Data SRAM Data Number Triggered Triggered -
Scenario Format Capture Output of or Freerun M_ultlple or
Number Path Samples Single
1 1/Q Yes VX} Bus N Freerun
2 1/Q \V(é’sr {/XI Busr 7 N Triggered S}ﬁglerﬁi
3 " 1/Q 7 7Yes VXI Bus INDEF Freerun
4 1/Q Yes VX1 Bué 7 INDEFi %riggéred Sihgiylé" -
7 777!/@ | No” 7 Link port N Freerun)
” 9 /Q No Link port 7 N WTriggered Singler -
8 1/Q No Link port 4 N Triggered Hi}\rﬂultiple
77mgiiiimmbdr 7N6 Link port INDEF Fmemnrw 7
5 11Q No Link port INDEF Triggered N WSingIe
7 14 ADCV Yes VXI Bus N Freeran -
15 ADC Yes VXIéusﬁ 7 N Triggéred Single
) 11 7 ADC No Link port N Freerun; o
12 7 ADC No Link port N Triggered Sinae
13 AbC No Link port N Triggered Ml;|tlp](; o
71(7) Link port INDErI;r Triégéred Single

ADC No

3-58 E6501A/E6502A/E6503A VXI Receiver User's Guide

Table 3-18

DMA Block Size Considerations

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

When using scenarios 5, 6, 7, 8, and 9, which transmit digital [/Q data using
the top link port connector on the IF processor, the recommended and tested
data transfer process is the DMA method. Care must be taken to ensure that
the firmware running on the receiving device (for instance, the DSP card)

uses the same DMA block size as the E650XA receiver. For example, if you
wish to receive 10000 digital I/Q samples from 2 DDCs at 30 kHz BW, the
DMA block size is 144; therefore, (144 X 2 channels) = 288 samples
transmitted per output packet from the link port. Further, 10000 / 288 = 69
with a remainder of 64; therefore, to complete the entire transfer, a total of

69 packet transfers of size 288 plus one final packet transfer of size 128
would be required. Refer to Table 3-18 for the DMA block size values.

DMA Block Size Per Active Channel

DMABIlock DDC DMABlock DDC
Size Bandwidth Size Bandwidth

2 250 Hz 240 75 kHz
3 500 Hz 246 85 kHi
4 7561& 2}6 95 kHz

776” 1 kHz 306 110 kHz

14 - 27.4 kHz " 335 126 kHZﬁi -
16 3 kHz 372 139 kHz

E’)O V 5 kHz 372 156 kHz

34 6.25 kHz 372 177 kHz

60 10 kHz) 376 189 kHz

68 12.5 kHz 7 416 7 204 kHz

80 15 kHz 459 221 kHZV
108 ;MZ‘O'kI-ViZ ”500 241 kHz

V 135 25 kHz 5507 - 265 kHZiWW
144 30 kHz 67(7)70 7 7 295 kHz
7 126 35 kHz D 644 7 332 kHz

162 45 kHé 672 380 kHZ

175 54 kHz 7027‘ - 47472 kHZ

231 66 kHz 7378> - 468 kHZ

E6501A/E6502A/E6503A VXI Receiver User's Guide

3-59

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Common Functions for Collection

The code in the Commonex.c file shown below defines functions that are
common to most of the fifteen capture scenarios found in this section. When
examining the code for a particular capture scenario, refer back to
COMMONEX.c as necessary.

Zinclude <stdlib.hx

#include <stdio.h>

#define VISA

#include "hpe650x.h"

#include <time.h>

#define MSEC PER CLOCK_TICK (float)(1000.0 / CLOCKS_PER_SEC)

void mSleep(Vilnt32 milli_sec):

/* configures master if channel for synchronized autorange operation */

ViStatus ConfigureMasterChannel(ViSession s. Vilnt32 IFChnl, ViPInt32 RAMpg. ViPInt32 Gp. ViPInt32 Gsp, ViPInt32 sysG)

s
!

ViStatus result;
Vilnt32 att: /* This is a throw away parameter for sync */
/* this function locks both fast HW autorange and disables DRO */
if{ VI_SUCCESS ! (result = hpe630x sctAutorangelock(s. IFChnl. VI_TRUE. 0, VI_FALSE)))
return result:
/* this function reads the autorange state of the master channel */
if{ VI SUCCESS != (result = hpe650x_getAutorangeState(s. IFChnl. Gp. Gsp. sysG)))
return result:
/* this function rcads the correction ram page number of the master channel */
if{ VI SUCCESS ! (result -~ hpe630x getlFAttenuator(s. IFChnl. &att. RAMpg)))
return result:
#1100 NOTE: to undo synch the user should call hpe650xsetAutorangeLock with tock’ = VI FALSE. 'lock’ is the third parameter in the function */
return VI_SUCCESS:

]
i

/* configures slave if channel for synchronized autorange operation */
ViStatus ConfigureSlaveChannel(ViSession s. Vilnt32 IFChnl. Vilnt32 RAMpg. Vilnt32 Gp. Vilnt32 Gsp. Vilnt32 sysG)

{
i

ViStatus result:
* this function disables DRO while the autorange state is being configured */
it VI_SUCCESS !+ (result - hpe630x stopDynamicRangeOptimization(s. IFChnl})))
return result:
/* this function sets the autorange state of the slave channel */
if(VI SUCCESS ! - (result = hpe630x setAutorangeState(s. IFChal. Gp. Gsp. sys(3)))
return result:
/* this function locks both fast HHW autorange and disables DRO */
if(VI SUCCESS '= (result = hpe650x setAutorangeLock(s. IFChnl. VI TRUE. RAMpg. VI TRUL}Y)
return result:
7 111 NOTE: to undo synch the user should call hpe6350xsetAutorangeLock with lock’ VI FALSE. lock’ is the third parameter in the function ¥/
return VI SUCCESS:

]
i

ViStatus ConfigureMasterIFP(ViSession s)
{
ViStatus result:
/* this function instructs the master if channel to send it's clock to the VXI backplane */
if(VI_SUCCESS !'= (result = hpe630x setMasterllFClock(5)))
return result:

/* this function instructs the master if channel to accept the VXTI backplane clock */

if{ VI SUCCESS = (result — hpe650x selectBackplancFs(s)))

3-60 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

return result;
/* We must do a hard reset to reboot the DSP chips. this time with one master clock. */
result = hpe650x_hardSystemReset(s);
/* It is necessary to close the VXI session after the hardSystemReset, because an initialization will be
session. 1f the original session were left open. we risk exceeding the maximum open VXI sessions.*/
result = hpe650x close(s):
return VI SUCCESS:

]
)

/* configures slave if channel for synchronized clock operation */
ViStatus ConfigureSlavelFP(ViSession s)

1
1

ViStatus result:
/* this function instructs the slave if channel to configure it's clock to aceept the VXI backplne clock */
if{ VI SUCCESS != (result — hpe650x_setSlavelFClock(s)))
return result:
/* this function instructs the slave if channel to accept the VXI backplane clock */
if(VI_SUCCESS ! - (result = hpe650x selectBackplaneFs(s)))
return result;
/* this function is a safety net since we have just switched the slave clock source */
result = hpe650x_hardSystemReset(sy
/* turn off VCO on slave */
if{ VI_SUCCESS ! - (result - hpe6350x disableVCO(s)))
return result:
* It is necessary to close the VXI session after the hardSystemReset. because an initialization will be
session. If the original session were left open. we risk exceeding the maximum open VXI sessions.*/
result = hpe650x close(s);
retwrn VI SUCCESS:

v
§

* configures system DDCs for synchronized operation */
ViStatus SynchronizeDDCs(Vilnt32 sessions. ViSession s[]. Vilnt32 mezzperifp)
i
int i
ViStatus result:
for(1= 0:1+ sessions; it -}
for(j = 0:j < mezzperifp: j=-)
{
result - hipe630x_prearmDDCsForSynchronization(s[i]. j):
if(VI_SUCCESS ! - result)
return result:

1
)

for i = 0;1 < sessions:it)
for(j = 0. < mezzperifp: jt +)
i
result hpe650x armDDCsForSynehronization(s| i]. j. VI TRUE):
i VI_SUCCESS ! result)
return result;
mSleep(50):

¥
i

return VI_SUCCESS:
1

i

void mSleep(Vilnt32 milli sec)

clock _t start_time:

performed in the main program, which creates a new

performed in the main program. which creates a new

E6501A/E6502A/E6503A VX Receiver User's Guide 3-61

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

if (milli_sec = 0)

i
\

start_time — clock():
if (start_time —— (clock_t) -1)
return;

while ((float)(clock() - start time) * (floa)MSEC PER_CLOCK_TICK = (floatymilhi _scc):

When called. 'error_exit' will get the description of the error that was returned and print it to the screen. along with the file name and line number of the procedure call that

returned the error code. ‘error exit' will then cleanly close the instrument exit the program.

*

ViStatus error_exit(ViSession s, ViStatus status_code, int finenum. char srefile{})

]
t

char buff[256]:

FILE *stream:

hpe650x error_message(s. status_code. buff):

stream — fopen("errorlog.txt". "w")
fprintf(stream, "nThe Driver call at line %d in file %sin" linenum srefile):
fprintf{ stream. "returned error code %0 10x. "%st ", status_code. buft):

felose(stream);

printf("\nThe Driver call at line % in file %as'n".linenum.srefile):

st ', status code. buff):

printf{("returned error code “4#010x.
printf("Exiting ...\n"):

hpe630x_ close(s):

exit{(int)status code):

return status_code: /* This is only here to suppress comptler warnings */

3-62 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 1: Capture N Samples of Digital I/Q Data Across VXI
Bus

Use the following programming example for capturing a specified number
of digital 1/Q data samples across the VXI bus without the use of a trigger to
begin the capture process.

Figure 3-26 shows the main process steps for this scenario.

‘ Start Scenario 1 ,
Initialize Modules / Open Select Monitoring Mode Setup Tuner Zf”d 1F Setup and Tune DDCs
VXi Sessions Channels
atup ;
Ll Synechronize Autoranging H Sctugptanagt;r)i‘r:ﬂeod:}__’li Get 1Q Data l——‘
|——‘>/ Store / Disptay Data /—»@se VX1 Sessions)

Figure 3-26 Scenario 1: Capture N Samples of Digital 1/Q Data Across VXI Bus

*
Scenario 1:Capture n-samples of digital 1Q data and output to
the VXI bus with no trigger.
Notes:
1. The following files must exist in the same directory as the source code.
"hpe650x.h"
"commonex.h”
"commonex.c”
"visatype.h”
"vpptype.h”
2. The file "hpe650x.1ib” must be available during linking.
3. This program requires the installation of SRAM on Mezzanine 1 of the IF Processor whose VXT address is stored in IFPvxilD{0]. SRAM s also required on other
mezzanines in the system if more than one IFP exists or if MEZZperIFP ts greater than 1.
4. The user should read through the code modifying the following. as necessary:
a. Constants that define the number of IF channels. IF processors and mezzanines
b. Variables that define VXI addresses

C. SYNC AUTORANGL controls whether all IFP autoranging is synchronized.

d. TunerExists should be set to VI TRUE if a tuner exists otherwise is should be set to VI FALSE.
f. "teenter” which defines the tuner's center frequency
u. "ddetreq” sets the frequency tuning of the DDCs relative to the IF.
h. "ddebw" sets the bandwidth of the DDCs. See the user documentation for a table of appropriate values.
i, "AnatogFilter”. "suspend”. "format”. "collect” and "output” can be set to predefined constants as described below.
5. The commands hpe630x_init(). hpe630x initIFChannel() and hpe630x _setMonitoringMode() must be exceuted before other commands. such as

hpe6S0x_setTunerkrequency().

Note: This example has been simplified to aperate with no triggers and with only one DDC on one mezzanine. Plcase see the other scenarios for examples
with multiple DDCs and mezzanines.

Disclaimer: This code is provided AS IS, Ttis a sample and unsupported.

*

#include <stdlib.h. -

E6501A/E6502A/E6503A VX! Receiver User's Guide 3-63

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

#include =stdio.h=

Adefine VISA

#include "hpe650x.h"

finclude "commonex.h"

/* Number of IF channels */

#define IFCHNLS 1

/* Number of 1F processors installed */

#define SYSIFPS 1

/* Number of mezzanines per 1FP *

#define MEZZperlFP - 2

/* Extend for IFPs, This is an array for which each element contains a VXI address string. This example shows a system with only one IFP. */
ViRsre [FPvxilD[SYSIFPS] - | "VXI0:43::INSTR"}:
/* Extend for IFs.

There are arrays for which each element contains a VXI address integer. The first dimension spans the system IFPs. The second dimension spans the IF channels for
each IF processor. This example shows the VX1 module addresses for one 3 Glz tuner. */

Vilnt32 LO_log_addr[SYSIFPS][IFCHNLS] = { 41}
Vilnt32 OneG_log_addr[SYSIFPS|[IFCHNLS] = { 42}
Vilnt32 ThreeG log_addr[SYSIFPS]| IFCHNLS| = { 404

/* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI TRUE") */

#define SYNC_AUTORANGE VI FALSE

* If the tuner exists. this constant should be set to VI_TRUE*/

#define TunerExists VI TRUE

PR SO BRSO R R R RO R RO R RR R R KRR R
Don't change these. otherwise the code won't work anymore :-(

R RO R KR AR R AR R R R R R R R K R R R R kK

#define IF1 0

#define 121

#define IFPE O

#define MEZZT 0

ddefine MEZZ2 1

#define DDCT O

#define DDC2 1

#detine DDC3 2

#define DDC4 3

#define DHDCS 4

#define IF30KHZ 0

Zdefine IF700KIIZ 1

#define IFSMHZ 2

“define RELATIVEQ

zdefineABSOLUTE 1

#detine DATANOTREADY -1

#define CAPTURENOTRUNNING 0

#define CAPTUREDATANOTREADY 2

#define CAPTUREDATAREADY 3

#detine DIGITALIQ 0

#detine ADCDATA !

#define VXIBUS 0

#define PORT |

#define TRIGGER 1

#define FREERUN 0

#define SRAM 1

#define LINKPORTO

JRER AR IR A AR AR KRR AR R R R Rk KRR SR KRR R

%

The macro ‘reheck’ saves the return status in the variable 'ret’. If the return status indicates an crror, 'reheck’ will call 'error_exit'. The 'rcheck’ macro requires variables 'ret” and
‘instrumentID’ be defined.

3-64 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

*
#define reheck(A) (((result ~ Ay = VI SUCCESS) 7

(result) : (error_exit(sessionID[ifploresult. LINE . FILE_)))
int main()

1
1

int 1. i{p. mezz, chan:

ViStatusresult;

ViSessionsessionlD{ SYSIFPS]:

Vilnt32 correction. RAMpg. Gprofile, Gsubprofile, Gsystem:

Vilnt32 sample - 2000: * Number of samples or 0 if taking indefinite length. */
Vilnt32 length = 2000:

Vilntl6 IDataf 2000}, QData[2000}:

ViReal64 finit — 20¢6; * This number should be less than | GHz.*/
ViReal64 feenter = 2600e6: * This number can be any valid frequency for the tuner.*/
Vilntl6 ddefreq = 0: /* See uscer manual for "hpe630x_setDDCFrequency*/
Vilnt16 ddcbw = 8; /% See user manual for "hpe630x_setDigitalIFBandwidth"*/
Vilnt32 AnalogFilter - [F700KHZ: /* Other choices are IF30KHZ or IFSMHZ */
ViBoolean suspend = FREERUN: /* Choices are FREERUN or TRIGGER */
ViBoolean format - DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect ©~ SRAM: /* Choices are SRAM or LINKPORT */

ViBoolean output VXIBUS: * Choices are VXIBLUS or PORT */

/* Configure the receiver state. initialize all IFP's and IF's */
for(ifp — 0: ifp = SYSIFPS: ifp! +)

¢
t

rcheck(hpe630x init(IFPvilD{ ifp). VI TRUE. VI_TRUE. &sessionID} ifp)):
for(chan — 0: chan - IFCHNLS: chant+)
/* Initialize the IF channels including establishing communication to their addresses. The initial

reheck(hpe630x_initIFChannel(sessionID[ifp]. chan. TunerBxists. finit. LO_log_addr{ ifp][¢han].
ThreeG_log_addr(ifp][chan])):

]
j

* Put all IFPs into monitoring mode */
for(ifp - 0:ifp < SYSIFPS: ifp+-)
for(mezz = 0: mezz - MEZZperlFP: mezz-+)
rcheck(hpe630x setMonitoringMode(sessionID] ifpl. mezz)):
/* Set up and tune the 1Fs */
for(ifp — 0: ifp = SYSIFPS: ifpi t)
for(chan = 0: chan -2 IFCHNLS: chant +)
!
i* Set the tuner frequency to the value of "feenter*/
rcheck(hpe650x_setTunerkFrequency(sessionlD[ifp]. chan. feenter)):
* Set the analog filter to either 30 kHz. 700 kHz or 8 MHz using "AnalogFilter"*/
rcheek(hpe630x sctAnalogFilter(sessionlDlifp]. chan. AnalogFilter)):
/* Activate autorange once after the initialization of each mezzanine.*/
rcheck(hpe630x_activateAutoranging(sessionID{ifp]. chan)):

|
'

/* Set up and tune DDCs */
for(ifp O ifp = SYSIFPS: ifp+-)
tor(mezz 0:mezz =~ MEZZperlFP: mezz++)

]
t

/* The following function can be used for cach DDC installed */
rcheck(hpe6350x setDDCFrequeney(sessionIDfifp]. mezz, DDCL. RELATIVE, ddcfreq));
/* rcheck(hpe630x setDDCFrequency(sessionID[ifp]. mezz. DDC2. RELATIVE, ddefreq)):

frequency needs to be below | GHz.*/

OneG log addr[ifp]] chan].

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-65

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

*
#define reheck(A) (((result ~ Ay = VI SUCCESS) 7

(result) : (error_exit(sessionID[ifploresult. LINE . FILE_)))
int main()

1
1

int 1. i{p. mezz, chan:

ViStatusresult;

ViSessionsessionlD{ SYSIFPS]:

Vilnt32 correction. RAMpg. Gprofile, Gsubprofile, Gsystem:

Vilnt32 sample - 2000: * Number of samples or 0 if taking indefinite length. */
Vilnt32 length = 2000:

Vilntl6 IDataf 2000}, QData[2000}:

ViReal64 finit — 20¢6; * This number should be less than | GHz.*/
ViReal64 feenter = 2600e6: * This number can be any valid frequency for the tuner.*/
Vilntl6 ddefreq = 0: /* See uscer manual for "hpe630x_setDDCFrequency*/
Vilnt16 ddcbw = 8; /% See user manual for "hpe630x_setDigitalIFBandwidth"*/
Vilnt32 AnalogFilter - [F700KHZ: /* Other choices are IF30KHZ or IFSMHZ */
ViBoolean suspend = FREERUN: /* Choices are FREERUN or TRIGGER */
ViBoolean format - DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect ©~ SRAM: /* Choices are SRAM or LINKPORT */

ViBoolean output VXIBUS: * Choices are VXIBLUS or PORT */

/* Configure the receiver state. initialize all IFP's and IF's */
for(ifp — 0: ifp = SYSIFPS: ifp! +)

¢
t

rcheck(hpe630x init(IFPvilD{ ifp). VI TRUE. VI_TRUE. &sessionID} ifp)):
for(chan — 0: chan - IFCHNLS: chant+)
/* Initialize the IF channels including establishing communication to their addresses. The initial

reheck(hpe630x_initIFChannel(sessionID[ifp]. chan. TunerBxists. finit. LO_log_addr{ ifp][¢han].
ThreeG_log_addr(ifp][chan])):

]
j

* Put all IFPs into monitoring mode */
for(ifp - 0:ifp < SYSIFPS: ifp+-)
for(mezz = 0: mezz - MEZZperlFP: mezz-+)
rcheck(hpe630x setMonitoringMode(sessionID] ifpl. mezz)):
/* Set up and tune the 1Fs */
for(ifp — 0: ifp = SYSIFPS: ifpi t)
for(chan = 0: chan -2 IFCHNLS: chant +)
!
i* Set the tuner frequency to the value of "feenter*/
rcheck(hpe650x_setTunerkFrequency(sessionlD[ifp]. chan. feenter)):
* Set the analog filter to either 30 kHz. 700 kHz or 8 MHz using "AnalogFilter"*/
rcheek(hpe630x sctAnalogFilter(sessionlDlifp]. chan. AnalogFilter)):
/* Activate autorange once after the initialization of each mezzanine.*/
rcheck(hpe630x_activateAutoranging(sessionID{ifp]. chan)):

|
'

/* Set up and tune DDCs */
for(ifp O ifp = SYSIFPS: ifp+-)
tor(mezz 0:mezz =~ MEZZperlFP: mezz++)

]
t

/* The following function can be used for cach DDC installed */
rcheck(hpe6350x setDDCFrequeney(sessionIDfifp]. mezz, DDCL. RELATIVE, ddcfreq));
/* rcheck(hpe630x setDDCFrequency(sessionID[ifp]. mezz. DDC2. RELATIVE, ddefreq)):

frequency needs to be below | GHz.*/

OneG log addr[ifp]] chan].

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-65

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

if(VI_SUCCESS == result)
!
/% This writes the I and Q data to the file results].txt in the same directory as the executable file. */
FILE *stream:
stream = fopen("meztddelaxt”. "w").
for(i = 0zi+ lengthzit-)
fprintf(stream, "%3d%3dm". [Data[i]. QData[i]):

fclose(stream),

/*This is a print statement to display the data on the monitor.*/
for(i=0:i< length: i~+)
printf(" 1] %dd] = %5d Q[%4d] = %5din".i. [Data[i]. i. QDataf i]):

¥
|

/* Close all IFPs*/
for(ifp = 0 ifp < SYSIFPS: ifp—+)

rcheck(hpe630x close(sessionID[1fp])):
return VI_SUCCESS:

E6501A/E6502A/E6503A VX! Receiver User's Guide 3-67

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 2: Capture N Samples of Digital I/Q Data From VXI Bus
Using a Trigger

Use the following programming example for capturing a specified number
of digital 1/Q data samples across the VXI bus using a trigger to begin the
capture process.

Figure 3-27 shows the main process steps for this scenario.

(Start Scenario 2 >

Y

| Initialize Modules / Open l_> Select Monitoring Mode H Synchronize Clocks for H Setup‘Tuner and IF I_J
VXI Sessions Triggering Channels
|—~>| Setup and Tune DDCs |>—>l Synchronize Autoranging l—->| Sem;eggstg%gﬁﬁi Get ;—‘
‘—bl Synchronize DDCs |—>| PreAm;”agngde/:rm for l—»l Send Trigger }——»li Get 1Q Data }—’
L—7/ Store / Display Data H Close VXI Sassions)

Figure 3-27 Scenario 2: Capture N Samples of Digital I/Q Data From VXI Bus Using
a Trigger

Scenario 2:Capture n-samples of digital 1Q data and output to

the VXTI bus with an external trigger.

Notes:

1. The following files must exist in the same directory as the

S

ource code.

"hpe630x.h"

“commonex.h”

"commonex.¢”

“visatype.h"

"vpptype.h”

file "hpe6350x.1ib” must be available during linking.

program requires the installation of SRAM on Mezzanine |

of the IF Processor whose VXTI address is stored in IFPvxiID[0].

SRAM is also required on other mezzamnes in the system

it more than one [FP exists or if MEZZperTFP is preater than 1.

2. The
3. This
4.

The user should read through the code moditying the

following, as neeessary:

a.

Constants that define the number of IF channels. 1IF
processors and mezzanines

Variables that define VXIT addresses

SYNC_AUTORANGE controls whether all IFP autoranging
is synchronized.

TunerExists should be set to VI TRUE if a tuner exists

otherwise ts should be set to VI FALSE.

3-68 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

e, SYNC _CLOCKS is set to VI_TRUE when coherent measurements

across multiple mezzanines and/or multiple IFPs is desired.

f. "feenter” which defines the tuner's center frequency

e, "ddcfreq” sets the frequency tuning of the DDCs relative
to the IF.

h. "ddebw” sets the bandwidth of the DDCs. See the user

documentation for a table of appropriate values.

i " AnalogFilter”. "suspend". "format”. "collect” and "output”

can be set to predefined constants as described below.

5. The commands hpe650x init(), hpe630x_initIFChannel() and
hpe6350x_setMonitoringMode() must be executed before other
commands. such as hpe650x sctTunerFrequency().

6. To synchronize DDCs across multiple mezzanines, the third
parameter of hpe630x_armDDCsForSynchronization in "commonex.c”
must be set to VI_TRUE. In addition. two trigger signals must
be sent from a external source to mezzanine |.
7. IMPORTANT: In this example. the two trigger signals MUST be
sent when prompted. and BEFORE ANY SUBSEQUENT COMMANDS. otherwise
the program will hang at the hpe650x _getCaptureDigitallQData()
command.
Disclaimer: This code is provided AS IS. It is a sample and unsupported.

*

#include <stdlib.h=>

#include ~stdio h-

#define VISA

#include "hpe630x.h"

#Zinclude "commonex.h”

/* Number of IF channels *

#define IFCHINLS |

#* Number of IF processors installed */

tdefine SYSIFPS |

/* Number of mezzanines per IFP *

#define MEZZperIFP - 2

/* Extend for IIPs.

This is an array for which cach clement contains a VXTI address string.
This example shows a system with only one IFP. *

ViRsre [FPvxiID[SYSIFPS] - | "VXI10:43:INSTR"}:

/* Extend for IFs,

There are arrays for which cach clement contains a VXI address integer.
The first dimension spans the system IFPs. The second dimension spans
the IF channels for each IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. ¥/

Vilnt32 LO log adde[SYSIFPS][IFCIINLS] = { 41}:

Vilnt32 OneG log addr| SYSIFPS][IFCHNLS] = { 42}

Vilnt32 ThreeG log addr| SYSIFPS]{ IFCHNLS] = { 40}

#* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI_TRUE") */

#detine SYNC_AUTORANGE VI FALSE

* If the tuner exists. this constant should be set to VI TRUE*/

#define TunerExists VI_TRUE

/* Use this to switch on synchronized IFP clocks (VI TRUE). This MUST be
done if there is more than one mezzanine on an IFP. even if only one
mezzanine is used in the measurement. This is because of how the
trigger signal is propagated throughout multiple mezzanines */

#define SYNC_CLOCKS VI TRUE

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-69

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

JER SRR R R R R KRR R R R ROR R R R R R
Don't change these. otherwise the code won't work anymore :-(

e A K R R R R KRR R R HR KR R 3R K R KO R R KKK KKK KKK R R SR

#define IF1 0

#define IF2 1

fidefine IFPY 0

#define MEZZ1 0

#detine MEZZ2 |

#define DDC1 0

#detine DDC2 1

#define DDC3 2

#define DDC4 3

idefine DDC5 4

#define IF30KHZ 0

#define IF700KHZ |

#define IFSMHZ 2

#define RELATIVEQ

#detineABSOLUTE |

£define DATANOTREADY -1

#detine CAPTURENOTRUNNING 0

#define CAPTUREDATANOTREADY 2

Adefine CAPTUREDATAREADY 3

#define DIGITALIQ 0

#define ADCDATA !

#detine VXIBUS 0

#define PORT |

#define TRIGGER |

#define FREERUN 0

#define SRAM 1

#define LINKPORTO

/'***’r
* The macro 'rcheek’ saves the return status in the variable 'ret’.
If the returmn status indicates an error. ‘reheck' will call ‘error_exit'.
The 'reheck' macro requires variables 'ret’ and "instrumentll)’ be defined. */
#define reheck(A) (((result = Ay —— VI SUCCESS) 7
(result) : (error exit(sessionID[ifp|.result.__ LINE_ . FILE)))
mt main()

1
1

int 1. ifp. mezz, chan:

ViStatusresult:

ViSessionsessionID| SYSIFPS|:

Vilnt32 correction RAMpg. Gprofile. Gsubprofile. Gsystem:
Vilnt32 sample 2000:

Vilnt32 length - 2000:

Vilnt32 totlength — 4000:

Vilnt16 IData[4000]. QData[4000]:

ViReal64 finit — 20e06: /* This number should be less than 1 GlHz. */
ViReal64 feenter = 2600¢0: /* This number can be any vahd frequency for the tuner. */
Vilntl6 ddefreq — 0: /x See user manual for "hpe630x sctDDCFrequency” */
Vilntl6 ddebw = 8: * See user manual for "hpe630x_setDigital [FBandwidth” */
Vilnt32 AnalogFilter — IF700KHZ: /* Other choices are IF30KHZ or IFSMHZ */
ViBoolean suspend -~ TRIGGER; /* Choices are FREERUN or TRIGGER */
ViBoolean format — DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect = SRAM: /* Choices are SRAM or LINKPORT */

3-70 EB6501A/E6502A/E6503A VX! Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

ViBoolean output = VXIBUS: /* Choices are VXIBUS or PORT */
/* Configure the receiver state. initialize all IFP's and IF's */
for(itp = 0: ifp -* SYSIFPS: ifp++)

i
t

reheek(pe630x it IFPvxiID[itp). VI_TRUE. VI TRUE, &sessionID{ itp])):
for(chan = 0: chan < IFCHNLS: chant -)
/¥ Initialize the IF channels including establishing communication to their addresses. The initial

rcheck(hpe630x initlFChannel(sessionID] ifp]. chan. TunerExists. finit, LO log_addr{ ifp][chan].
ifp][chan])):

|
|

7* Put all IFPs into monitoring mode */
for(ifp = 0: ifp < SYSIFPS: ifpt i)
for(mezz — 0; mezz <~ MEZZperlFP; mezz—+)
rcheck(hpe630x_setMonitoringMode(sessionlD| ifp]. mezz)):
* Synchronize clocks between all mezzanines and IFPs. The [FP at sessionID[0] is always the master in this
it VI TRUE += SYNC _CLOCKS)

f
t

* Instructs the master IFP to send its clock out VX1. Since the sample clock is also the DSP ¢clock, this
all the modulues are also reinitialized to reboot the DSPs.*/

reheck(ConfigureMasterIFP(sessionIDf 0])):
rcheck(hpe630x_init IFPvxiID[IF1]. VI_TRUE, VI TRUE. &sessionID[IF1])):
for(chan — 0: chan = IFCHNLS; chan+ +)

rcheck(hpe650x_initlFChannel(sessionID[1F1]. chan. TunerExists. finit. LO_log_addr] IF1{[chan].

ThreeG_log_addr| IF1][chan])):
for(mezz — 0. mezz < MEZZperlFPrmezzt -)
rcheck(hpe630x setMonitoringMode(sessiontD[1F1]. mezz)):
/* Now configure all slave IFPs. The slaves are instructed to accept the master clock. Finally. the slaves
for(ifp — 1: ifp = SYSIFPS ifp- 1)

]
1

reheck(ConfigureSlavelFP(sessionID[ifp])):
reheck(hpe650x init(IFPvxilD[ifp]. VI TRUE. VI_TRUE. &sessionlD[ifp})):
for(chan - 0: chan < IFCHNLS: chant +)

frequency needs to be below 1 GHz. ¥/

OneG_log addr| ifp][chan]. ThreeG_log_addr|

example.*/

action risks causing the DSPs to hang. Therefore

OneG log adde[IF1]| chan].

must be reinitialized to boot the DSPs.*

rcheck(hpe630x intt{FChannel(sessionID{ ifp]. chan. TunerExists. finit. LO Jog addr[itp][chan]. OneG log addr] ifp}{ chan}.

ThreeG log_addr[ifp][chan])):
for(mezz. — 0 mezz < MEZZperIFP: mezzt +)
rcheck(hpe630x_setMonitoringMode(sessionID[ifp]. mezz)):

]
§

/* Set up and tunc the IFs */

for(ifp - 0: ifp < SYSIFPS:ifp-¢)
for(chan -- O: chan - IFCHNLS: chan++)
§

* Set the tuner frequency to the value of "feenter™*/

rcheck(hpe650x setTunerlrequency(sessionlD[ifp]. chan. feenter)):
* Sct the analog filter to either 30 kHz. 700 kHz or 8 MHz using "AnalogFilter"*/
j rcheck(hpe630x_sctAnalogFilter(sessiontD[ifp]. chan, AnalogFilter)):

Activate autorange once after the initialization of cach mezzanine.*/

rehecek(hpe630x activatcAutoranging(sessionID{ifp[. chan)):

\
\
|
|
|
| /* Set up and tune DDCs */
1 for(ifp = O; itp <* SYSIFPS: ifpt t)

for(mezz - 0. mezz <= MEZZperIFP: mezz++)

E6501A/E6502A/E6503A VX! Receiver User's Guide 3-71

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

/* The following function can be used for each DDC installed */

rcheck(hpe6350x_setDDCFrequency(sessionlDifp]. mezz. DDCL. RELATIVE. ddcfreq)):

rcheck(hpe630x_setDDCFrequency(sessionID[ifp], mezz, DDCS, RELATIVE. ddcfreq));
i rcheck(hpe630x_setDDCFrequency(sessionID[ifp], mezz, DDC2, RELATIVL. ddcfreq)):

rcheck(hpe630x_setDDCFrequency(sessionlD[ifp]. mezz, DDC3. RELATIVE. ddefreq)):

rcheck(hpe630x_setDDCFrequency(sessionlD[ifp]. mezz. DDC4. RELATIVE, ddcfreq));*/

/* only need to call this function once per mezzanine */

rcheck(hpe650x setDigitalIFBandwidth(sessionID[ifp]. mezz. ddebw)):

v
'

/* synchronize autoranging on all modules in system */
if{ VI_TRUE == SYNC AUTORANGLE)

1
\

/* sync autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionID[IFP1]. IF1. &correction. RAMpg. &Gprofile. &Gsubprofile. &Gsystem)):
/* synch autoranging on the slave channels */
if(IFCHNLS = 1)

rcheck(ConfigureSlaveChannel(sessionlDf IFP1], IF2. correction RAMpg. Gprofile, Gsubprofile, Gsystem));
for(ifp = 1. ifp < SYSIFPS: ifp: 1)

for(chan — 0: chan < IFCHNLS: chan-+)

reheck(ConfigureSlaveChannel(sessionlDF itp]. chan. correction. RAMpg. Gprofile. Gsubprofile. Gsystem)):

]
§

* Set up to do the actual data capture */
for(ifp = 0. ifp = SYSIFPS: ifpt t)
for(mezz — 0: mezz < MEZZperlFP: mezz++)

{
1

rcheck(hpe630x setCaptureDataDDCNum(sessionID[ifp]. mezz. DDCH. VI_TRUE)):

reheck(hpe630x setCaptureDataDDCNum(sessionID[ifp]. mezz, DDC5. VI_TRUE)):
* rcheek(hpe630x setCaptureDataDDCNum(sessionID[ifp]. mezz. DDC2. VI TRUE)):

rcheck(hpe650x setCaptureDataDDCNum(sessionID[ifp]. mezz. DDC3. VI TRUE)):

rcheck(hpe630x setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDC4. VI TRUE)):*/

mSleep(50): /* allow for DDC transients */ -

rcheck(hpe650x_setCaptureDataFormat(sessionlDJ[itp]. mezz. fonnat)):

rcheck(hpe6350x_setCaptureCollectinSRAM(sessionID[ifp]. mezz. collect)):

reheck(hpe650x_setCaptureDataOutput(sessionID[ifp]. mezz. output)):

rcheck(hpe630x setSuspendedCapturcTask(sessionID[ifp]. mezz. suspend)):

rcheck(hpe630x setNumberOfSamplesToCapture(sessionID[ifp). mezz. sample)):

rcheck(hpe630x startCapture(sessionID[ifp]. mezz)):

1
b

i* Synchronize all DDCs*/
rcheck(SynchronizeDDCs(SYSIFPS. sessionlD. MEZZperlFP)):
* Prearm -- required before arming. This stops any curtent activity . */
for{ ifp = 0vifp <= SYSIFPS: ifp—+)
for{ mezz - 0:mezz < MEZZperlFP; mevzz++)

rcheck(hpe650x prearmDSPForDataCollection(sessionID[ifp]. mez2)):

/* Arm the master DSP. The master is defined as sessionID] 0] in this example.*/

reheek(hpe650x armDSPForDataCollection(sessionIDf 0], MEZZ1. VI_FALSE)):

% Arm the slave DSPs ¥/
il MEZZperIFP = 1)
rcheck(hpe630x_armDSPForDataCollection(sessionlD{0]. MEZZ2. VI_TRUE)):

3-72 E6501A/E6502A/E6503A VXI Receiver User's Guide

H(SYSIFPS - 1)

/%

printf("Fire the trigger. Press Enter to continue'n”):

for(ifp + l:ifp < SYSIFPS: ifpt +)

for(mezz = 0; mezz < MEZZperlFP: mezz++)

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

rcheck(hpe650x_anmDSPForDataCollection(sessionID[itp]. mezz, VI TRUE));

Prompt user for the trigger.*/

getchar();

/* sleep while data is captured */

mSleep(1000):

/*

It will gather measurements taken from two DDCs.

The remaining code only accommodates one IFP and two Mezzanines.

The data output will be interleaved:

1[ddc1.0] OQldde1.0] 1[dde2.0] Q[dde2.0}
I[ddct.1] Q[ddel.1] Ifddc2.1} Q[ddc2,1]

I[ddc].n] Q[ddel.n] [[ddc2.n] Q[ddc2.n]*/

/* Retrieve data from mezzanine | */

do

(
t

/* Qutput the captured data to the monitor or a file */

/* Loop until the DSP finishes giving us the data across the bus. Notice that we gather

a quantity of samples defined by "totlength”. which should be the total number of DDCs

enabled for capturing times “length.”In this example, we've enabled DDC1 and DDC5.

cach taking 2000 samples. making "totlength” equal to 4000.%/

result - hpe630x getCaptureDigitallQData(sessionlDD| 0. MEZZ1. IData. QData. &totlength):
} while (DATANOTREADY == result).

il(VI SUCCESS == result)

1
|

/* This writes the I and Q data to the file results1 txt in the same directory as the executable file.

FILE *strecam:

stream — fopen("mezlddelaxt™. "w")

for(i - 0:1 < length:i++)

fprintf(stream. "%3d%3din". TData[i*2], QData] i*2]):

fclose(stream)

stream - fopen("mezlddeS.txt”. "w'

for(i - 01~ length: i+ +)

):

*

fprintf(stream. "%5d%3dwn ", IData[i*2+1]. QDataf i*2- 1]):

fclose(stream):

stream — fopen("mezlallext”, "w")

for(i~ 0.1+ totlength: i+4)

fprintf(stream. "%%5d%5dwn", [Data] i]. QData[i]):

felose(stream):

/*This is a print statement to display the data on the monitor.*/

for(i~ 0:1 < totlength; i++)

printf(" If %d4d] = %5d Q[%4d] = %5din", i. IDatal i]. i. QData[i]);

/* Retrieve data from mezzanine 2 ¥/

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-73

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

do

* Loop until the DSP finishes giving us the data across the bus. Notice that we gather
a quantity of samples defined by “totlength”, which should be the total number of DDCs
enabled for capturing times “length."In this example. we've enabled DDC1 and DDCS5.
each taking 2000 samples. making "totlength” equal to 4000.%/
result - hpe630x_getCaptureDigitalIQData(sessionIDf 0], MEZZ2. IData. QData. &totlength):
3 while { DATANOTREADY —— result);
/* Qutput the captured data to the monitor or a file.*/
if{t VI SUCCESS — result)
!
* This writes the | and Q data to the file resultsi.txt in the same directory as the executable file. */
FILE *stream:
stream = fopen("mez2ddel Axt™. "w")
for(i = 0:1 < length: i-+)
fprintf(stream. "%5d%3d'n". IData[i*2]. QData[i*2]):

felose(stream):

stream fopen(“mez2dde3.axt". "w")
for(i - 0.1 length:it +)
fprintf(stream. "%63d%Sdn". IData[1*2+1]. QData[1*2+1]):
telose(stream):
stream = fopen{ "mez2all.txt”. "w")
for(i=0:1 < totlength; i- t)
fprintf(stream. "%3d%3din", [Data[i]. QData i]):
felose(stream):
/*This is a print statement to disptay the data on the monitor.*/
for(i — 0.1 totlength: 1=+)
printf(" 1] %4d} — %5d Q[%dd] - %5din". 1. IData] i]. i. QData] i]):

1
)

* Close all IFPs*/
for(ifp — 0. ifp < SYSIFPS:ifpi 1)

rcheck(hpe650x_close(sessionID] ifp])):
return VI SUCCESS:

3-74 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 3: Capture Digital I/Q Data Indefinitely Across VXI Bus

Use the following programming example for capturing an indefinite number
of digital 1/Q data samples across the VXI bus without the use of a trigger to
begin the capture process.

Figure 3-28 shows the main process steps for this scenario.

(Start Scenario 3 j

A

Initialize Modules / Open Select Monitoring Mode Setup Tunar and I Selup and Tune DDCs
VX Sessions N Charnals
|—>‘ Synchronize Autoranging |-—->| Sehg}ti‘;?g:gil‘rﬂccde‘ lr—}l Stop Capture H Get1Q Data i—‘
u Store / Display Uata /——b(Close VXI Sessians
) -

Figure 3-28 Scenario 3: Capture Digital 1/Q Data Indefinitely Across VXI Bus

Scenario 3:Capture an indefinite number of samples of digital

1Q data and output to the VX1 bus without a trigger.

Notes:

1. The following files must exist in the same directory as the

]

source code.

"hpe630x.h"”

"commonex.h”

“commonex.c”

"visatype "

"vpptype.h”

. The file "hpe650x.1ib" must be available during linking.

. This program requires the installation of SRAM on Mezzanine |

of the IF Processor whose VXTI address is stored in IFPvxilD[0].

SRAM is also required on other mezzanines in the system

if more than one IFP exists or if MEZZperIFP is greater than 1.

The user should read through the code modifying the

following. as necessary:

a.

Constants that define the number of 1F channels. IF
processors and mezzanines

Variables that define VXT addresses

SYNC AUTORANGE controls whether all IFP autoranging
is synchronized.

Tunerkxists should be set to VI_TRUE if a tuner exists
otherwise is should be set to VI FALSE.

“feenter” which defines the tunet's center frequency
“ddefreq” sets the frequency tuning of the DDCs relative
to the 1F.

“ddcbw" sets the bandwidth of the DIDCs. See the user
documentation for a table of appropriate values.

"AnalogFilter",

suspend”. "format”. “collect” and "output”

can be set to predefined constants as described below.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-75

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

3. The commands hpe6350x init(). hpe650x initIFChannel() and
hpe650x setMonitoringMode() must be executed before other
commands, such as hpe6350x_setTunerFrequency().

6. Note: This example has been simplified to operate with no
trigeers. Please sce the other scenarios for examples with

{riggers.

Disclaimer: This code s provided AS IS. It is a sample and unsupported.

*

#include «stdlib.h

#include stdio

#define VISA

#include "hpe6350x.h”

#include "Commonex.h”

/* Number of IF channels */

#define IFCHNLS 1

/* Number of IF processors installed */

#define SYSIFPS 1

/* Number of mezzanines per [FP */

#detine MEZZperlFP - 2

* Extend for [FPs */

ViRsre 1FPvxilD] SYSIFPS] — { "VXI0:43:INSTR")

/* Extend for IFs.
There are arrays for which cach element contains a VXI address integer.
The tirst dimension spans the system IFPs. The second dimension spans
the IF channels for each IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. */

Vilnt32 LO log addr] SYSIFPS]| IFCHNLS} = { 141}

Vilnt32 OneG log addrf SYSIFPS][IFCHNLS] = { 170}:

Vilnt32 ThreeG log addr| SYSIFPS][IFCHNLS] = { 40}

#* Use this to switch on sychronized autorange (Change "VI FALSE" to "VI_TRUL") */

#define SYNC AUTORANGE VI FALSE

* If the tuner exists. this constant should be set to VI_TRUE?*/

#define TunerExists VI TRUE

JRRRAR AR R AR R AR AR R R R R R R R K SRR SR

Don't change these. otherwise the code won't work anymore :-(

AR R KRR R R R R R KRR R R R R R R AR R A K K

#define IF1 0

#detine 12 1

#define IFP1 0

#define MEZZ1 0

#define MILZZ2

#define DDCT O

#define DDC2 1

#define DDC3 2

#define DDC4 3

#define DDCS 4

#define IF30KHZ 0

#define IF700KHZ |

#define IFRMHZ 2

#define RELATIVEQ

#defineABSOLUTE |

3-76 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

#define DATANOTREADY -1
#define CAPTURENOTRUNNING 0
#define CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0

#define ADCDATA 1

#define VXIBUS 0

fidefine PORT I

fidefine TRIGGER 1

#define FREERUN 0

#define SRAM 1

itdefine LINKPORTO

***’,’
*

The macro 'rcheck’ saves the return status in the variable ret’.

If the return status indicates an error, ‘rcheck’ will call "error_exit'.

The 'reheck' macro requires variables ‘et and "instrumentID' be defined.

*/

#define rcheck(A) (((result = A) —= VI SUCCESS) 7
(result) : (error exit(sessionlD[ifploresult. LINE . FILE_)))
int main()

1
\

int i, ifp. mezz, chan:

ViStatusresult:

ViSessionsessionlD[SYSIFPS]:

Vilnt32 correction. RAMpy. Gprofile. Gsubprofile, Gsystem:
Vilnt32 sample = 0:

Vilnt32 length = 2000:

Vilnt32 totlength — 4000:

Vilntl6 [Data] 4000]. QData| 4000]:

ViReal64 finit — 20e6: i* This number should be less than | GHz.*
ViReal64 fcenter = 2600e6: /% - This number can be any valid frequency for the tuner */
Vilnt16 ddctreq + 0: * See user manual for "hpe6350x _setDDCFrequency”*/
Vilntl6 ddcbw - 8: / *See user manual for "hpe630x setDigitallFBandwidth"*/
Vilnt32 AnalogFilter == IF700K117: /* Other choices are IF30KHZ, or IFSMHZ *
ViBoolean suspend - FREERUN: /* Choices are FREERUN or TRIGGER */
ViBoolean format -- DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect — SRAM: * Choices are SRAM or LINKPORT *
ViBoolean output — VXIBUS: /* Choices are VXIBUS or PORT */
/* Configure the receiver state. initialize all IFP's and IF's */
for(ifp — 0: ifp = SYSIFPS: ifp+ -)
!

reheek(hpe630x init(IFPvxilD] ifp). VI_TRUE. VI TRUE. &sessionID[ifp])):

for(chan - 0: chan - [IFCHNLS: chant)

* Initialize the IF channcls including establishing communication to their addresses. The initial

rcheck(hpe630x_initlFChannel(sessionID] ifp], chan. TunerExists. finit. LO_log addr[ifp][chan}.

ifp|f chan])):

]
i

/* Put all IFPs into monitoring mode */
for(ifp — 0z ifp ~ SYSIFPS: ifpt +)

for(mezz = 0: mezz < MEZZperlEFP; mezz+ +)

reheck(hpe630x_setMonitoringMode(sessionID[ifp]. mezz)):

frequency needs to be below I GHz.*/

OncG log addr| ifp]f chan]. ThreeG log addr|

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-77

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

/* Set up and tune the 1I°s #/
for(ifp = 0; ifp < SYSIFPS:ifp- t)
for(chan = 0: chan < IFCHNLS: chan~+)

1
b

/* Set the tuner frequency to the value of "feenter”*/

rcheck(hpe630x_setTunerkFrequency(sessionlD[ifp]. chan, feenter)):

* Set the analog filter to cither 30 kHz, 700 kHz or 8 MH using "AnalogFilter"*/
reheck(hpe630x_setAnaloghilter(sessionID[ifp]. chan, AnalogFilter)):

/% Activate autorange once after the initialization of each mezzanine */

rcheck(hpe630x_activateAutoranging(sessionlDfifp]. chan)):

1
l

/* Set up and tune DDC's */
for(ifp = O:ifp = SYSIFPS:ifp+ +)
for(mezz — 0. mezz < MEZZperll'P: mezzt 1)

i
\

/* The foltowing function can be used for each DDC installed */

rcheck(hpe650x_setDDCFrequency(sessionlD[ifp]. mezz, DDCI. RELATIVE. ddcfreq)):

rcheck(hpe630x_setDDCFrequency(sessionlD{ifp], mezz, DDC3. RELATIVE. ddefreq)),
*rcheck(hpe650x setDDCFrequency(sessionlD[ifp], mezz. DDC2, RELATIVE. ddefreq)).

rcheck(hpe650x_ setDDCFrequency(sessionID[ifp]. mezz. DDC3. RELATIVE. ddcfreq)):

rcheck(hpe6350x_setDDCFrequency(sessionID[ifp]. mezz. DDC4. RELATIVE. ddcfreq)):*/

* only need to call this function once per mezzanine */

reheck(hpe630x_setDigitallFBandwidth(sessionID{ifp]. mezz, ddcbw)):

1
)

/* synchronize autoranging on all modules in system */
if{ VI TRUE == SYNC_AUTORANGE)

I
l

/* syne autoranging on master channel */

rcheek(ConfigureMasterChannel(sessionID[[FP1].IF1. &correction. RAMpe. &Gprofile. &Gsubprofile. &Gsystem)):

/* synch autoranging on the slave channels ¥/
if(IFCHNLS = 1)

icheck(ConfigureSiaveChanncl(sessionID[IFPH]. IF2. correction. RAMpg. Gprofile. Gsubprofile. Gsystem)):

for(ifp = 1. ifp = SYSIFPS:ifpt 1)
for(chan = 0: chan - IFCHNLS: chan++)
reheck(ConfigureSlaveChannel(sessionlD[itp]. chan. correction RAMpyg. Gprofile. Gsubprofile. Gsystem)):

]
l

/* Set up to do the actual data capture */
for(ifp - 0:ifp = SYSIFPS:ifp~+)
for(mezz = 0: mezz < MEZZperIFP: mezz++)

¢
t

rcheck(hpe630x setCaptureDataDDCNum(sessionID[ifp]. mezz. DDCIL. VI_TRUE)):

rcheck(hpe630x setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDC5. VI TRUE)):
*rcheck(hpe630x setCaptureDataDDCNum(sessionID[itp], mezz. DDC2. VI TRUE).

rcheck(hpe630x_setCaptureDataDDCNum(sessionID[itp]. mezz. DDC3. VI TRUE)):

reheck(hpe6350x setCaptureDataDDCNum(sessionlD{ifp], mezz. DDC4. VI TRUL)):*/

mSleep(50): /* allow for DDC transicents */

rcheck(hpe630x_setCaptureDataFormat(sessionID[ifp], mezz. format)):

rcheck(hpe630x_setCaptureCollectInSRAM(sessionID[ifp]. mezz. collect)):

rcheck(hpe630x setCaptureDataOutput(sessionID[ifp]. mezz. output)):

rcheck(hpe630x setSuspendedCapture Task(sessionlD[ifp], mezz, suspend)):

rcheck(hpe630x_setNumberOtSamplesToCapture(sessionID[ifp]. mezz. sample)):

rcheek(hpe650x_startCapture(sessionID|ifp]. mezz)):

3-78 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

mSleep(1000):/* let capture run for 1 second */
/* now stop capture */
for(ifp = 0: ifp < SYSIFPS; itp-t)
for(mezz — 0: mezz < MEZZperlFP; mezz++)

rcheck(hpe630x_stopCapture(sessionlD[ifp]. mezz)): -

/* The remaining code only accomniodates one IFP and two Mezzanines.
It will gather measurements taken from two DDCs.

The data output will be interleaved:

1[dde].0] Q[dde1.0] I[ddc2.0] Q[ddc2.0}
I[ddel.1) Qfddel.1] 1[dde2.1] Q[dde2.1)

I[dde].n]) Q[ddcl.n] I[dde2.n] Q[dde2.n]*/

/* Retrieve data from mezzanine 1 */
do

§
\

/* Loop until the DSP finishes giving us the data across the bus. Notice that we gather
a quantity of samples defined by “totlength”. which should be the total number of DDCs
enabled for capturing times "length."In this example, we've enabled DDC I and DDCS,
each taking 2000 samples. making “totlength™ equal to 4000.%/
result ~ hpe630x getCaptureDigitallQData(sessionID[0]. MEZZ1, IData. QData. &totlength):
1 while (DATANOTREADY —— result):
/* Output the captured data to the monitor or a file.*/
if{ VI SUCCESS —- result)

1
b

/* This writes the 1 and Q data to the file resultsl txt in the same directory as the executable file. */
FILE *stream:
stream fopen{ "mezlddel 4xt”. "w")
for(i - 001 lengthri—+)
fprintf(stream. "%e3d%3din", IDatal i*2], QData| 1*2]):

felose(stream):

stream = fopen("mezlddeS.txt”. "w")
for(i=10:1- lengthiitt)
fprintf(stream. "%63d%35din". IData[1*2: 1]. QDatal 1*2+11):
fclose(stream):
stream - fopen("mezlalltxt” "w")
for(i~ 01 totlength: it 1)
fprintf(stream. "%3d%Sdin". IData[1], QData[i]):
fclose(stream);
/*This is a print statement to display the data on the monitor.*/
for(i =01 totlength: i- t)
printf(" 1] %dd| - %5d Q[%dd] %o5din". i, IData[i].1. QData i]):

/* Retrieve data from mezzanine 2 */

do

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-79

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

/* Loop until the DSP finishes giving us the data across the bus. Notice that we gather
a quantity of samples defined by "totlength”. which should be the total number of DDCs
enabled for capturing times “length.”In this example. we've enabled DDC1 and DDCS5,
each taking 2000 samples. making "totlength” equal to 4000.*/
result — hpe6350x _getCaptureDigitallQData(sessionlD[0]. MEZZ2. IData. QData. &totlength):
1 while (DATANOTREADY - - result):
/* Output the captured data to the monitor or a file*/

if(VI_SUCCESS — result)

f
1}

/* This writes the I and Q data to the filc results txt in the same directory as the executable file. */
FILE *stream:
stream = fopen("mez2ddel txt™. "w"):
for(i-- 0.1 length: i+-)
fprintf(stream. "%3d%3d'n", IData[i*2]. QData[i*2]):
felose(stream):
stream - fopen("mez2dde3axt". "w")
for(i — 01+ length: i+ +)
fprintf(stream. "%65d%3dwn". 1Dataf i*2+1]. QData[i*2+1]):

fclose(stream):

stream = fopen("mez2all.txt”. "w")
for(1= 0:1 totlength: i++)
fprintf(stream. "%5d%35dn". IDatal i]. QData] i});
felose(stream).
/*This is a print statement to display the data on the monitor.*/
for(i 0:i - totlength: 1+ +)
printf(" 1] %odd] = %3d Q[%edd] = %5dn". i. IData[i]. 1. QData[i}):

A
l

/* Close all TFPs*/
for(ifp — O:ifp -~ SYSIFPS: ifp- t)
rcheck(hpe630x close(sessionID] ifp])):

return VI SUCCESS:

3-80 E6501A/E6502A/E6503A VX! Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 4: Capture Digital I/Q Data Indefinitely From VXI Bus

Using a Trigger

Use the following programming example for capturing an indefinite number
of digital I/Q data samples across the VXI bus using a trigger to begin the

capture process.

Figure 3-29 shows the main process steps for this scenario.

(Start Scenatic 4 ’

A 4

Synchronize Clocks for

Setup Tuner and IF

Ready to Capture

initialize Modules / Open »| Select M > >
VX! SBessions elect Monitoring Mode Triggering Channgls
L} Setup and Tune DDCs I Synchronize Autoranging Setup Capture Mode, Cet 4 Synchronize DDCs

H

3 E #
PreArm and Arm for

Trigger Send Trigger

=

Stop Caplure Process

>

Get 1Q Data

H

Store / Display Data H Close VXI Sessions ’

and

Figure 3-29 Scenario 4: Capture Digital 1I/Q Data Indefinitely From VXI Bus Using a

Trigger

Scenario 4:Capture an indefinite number of samples of digital

[Q data and output to the VXI bus with an external trigger.

Notes:

1. The following files must exist in the same directory as the

w

source code.
"hpe630x.h"
"commonex.h”
“commonex.c”
“visatype.h”

"vpptype.h”

. The file "hpe630x.1ib" must be available during linking.

. This program requires the installation of SRAM on Mezzanine |

of the IF Processor whose VXTI address is stored in IFPvxiID|0].
SRAM is also required on other mezzanines i the system

if more than one II'P exists or it MEZZperlFP is greater than 1.

The user should read through the code moditying the

following. as necessary:

a. Constants that define the number of IF channels, 1F
processors and mezzanines

b. Variables that define VXTI addresses

c. SYNC AUTORANGE controls whether all IFP autoranging
is synchronized.

d. TunerExists should be set to VI_TRUL if a tuner exists

otherwise is should be set to VI_FALSE.

EB6501A/E6502A/E6503A VX! Receiver User's Guide 3-81

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

e. SYNC CLOCKS is set to VI_TRUE when coherent measurements

across multiple mezzanines and/or multiple IFPs is desired.

f. "{eenter” which defines the tuner's center frequency

g "ddefreq” sets the frequency tuning of the DDCs relative

to the 1F.

h. "ddcbw” sets the bandwidth of the DDCs. See the user

documentation for a table of appropriate values.

now

1. "AnalogFilter”.

suspend”. "format”.

collect” and "output”

can be set to predefined constants as described below.

3. The commands hpe630x_init(). hpe650x initIFChannel() and

hpe630x setMonitoringMode() must be exceuted before other

commands. such as hpe650x_setTunerFrequency().

0. To synchronize DDCs across multiple mezzanines. the third

parameter of hpe650x_armDDCsForSynchronization in "cominonex.c”

must be set to VI TRUE. In addition. two trigger signals must

be sent from a external source to mezzanine 1.

7. IMPORTANT: In this example. the two trigger signals MUST be
sent when prompted. and BEFORE ANY SUBSEQUENT COMMANDS. otherwise

the program will hang at the hpe650x_getCaptureDigitallQData()

command.

Disclaimer: This code is provided AS IS. Itis a sample and unsupported.

*

Zinclude “stdlib b=

#include «stdio.h:-

#define VISA

#include "hpe630x.h"

dinclude "commonex.h”

* Number of 1F channels */
fidefine IFCHNLS 1

/% Number of IF processors installed */
#detine SYSIFPS 1

/* Number of mezzanines per IFP */
#define MEZZperIFP 2

/* Extend for IFPs.

This is an array for which each element contains a VXTI address string.

This example shows a system with only one IFP. */

ViRsre IFPvxill)] SYSIFPS] - { "VXI0:43:INSTR™)

/* Extend for IFs.

There arc arrays tor which cach clement contains a VXI address integer.

The first dimension spans the system JFPs. The second dimension spans

the IF channels for each IF processor. This example shows the VXI

module addresses for one 3 Gz tuner. */

Vilnt32 L.O log_addr| SYSIFPS][IFCHNLS]

{41}
Vilnt32 OneG log addr[SYSIFPS]f IFCHNLS] - { 42}
Vilnt32 ThreeG log addrf SYSIFPS][IFCHNILS] — { 40}:

% Use this to switch on sychronized autorange (Change “VI FALSE" to "VI_TRUE") */

#define SYNC AUTORANGE VI FALSE

*

#define Tunerkxists VI TRUE

If the tuner exists. this constant should be set to VI TRUE*/

3-82 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

/* Use this to switch on synchronized IFP clocks (VI_TRUE). This MUST be
done if there is more than one mezzanine on an IFP. even if only one
mezzanine is used in the measurement. This is because of how the
tripger signal is propagated throughout multiple mezzanines.*/

#define SYNC_CLOCKS VI_TRUE

R AR ORI KR R R R K KSR KR SRR S R KK K K KR

Don't change these. otherwise the code won't work anymore :-(

HAR KR AR R AR R R R R KR R KR KKK RO KK

ddefine IFI 0

Adefine 1F2 1

#define IFP1 0

fidefine MEZZI 0

#define MEZZ2

#define DDCI 0

#define DDC2 1

#define DDC3

#define DDC4 3

#define DDCS5 4

t#define IF30KHZ 0

#define IF700KHZ |

#define IFSMHZ 2

i#define RELATIVEO

#defineABSOLUTE |

itdefine DATANOTREADY -1

#define CAPTURENOTRUNNING 0

#define CAPTUREDATANOTREADY 2

#define CAPTUREDATAREADY 3
#define DIGITALIQ 0

#define ADCDATA 1

#define VXIBUS 0

#define POR' !

#define TRIGGER |

#define FREERUN 0

itdefine SRAM 1

#define LINKPORTO

JERE AR AR R AR AR AR R Rk R R Rk KR R KRR KRR R R R Rk
I

The macro rcheck’ saves the return status in the variable et

If the retumn status indicates an error. ‘reheck” will call 'error exit'.

The 'reheck' macro requires variables ‘et and ‘instrumentID' be defined.

*
#define reheck(A) (({result — A) == VI _SUCCESS) 7

(result) @ (error exit(sessionlDfifplresult. LINE . FILE)

int main()

¢
L

int I
int itp. mezz. chan:
ViStatusresult:

ViSessionsessionID| SYSIFPS]:

Vilnt32 correction. RAMpg. Gprofile. Gsubprofile. Gsystem:
Vilnt32 sample = 0:

Vilnt32 length = 2000:

Vilnt32 totlength = 4000,

Vilnti6 IDataf 4000}. QData| 4000]:

ViReal64 finit - 20e6: /* This number should be less than | GHz.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-83

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

ViRealod feenter = 2600¢06: i* This number can be any valid frequency for the tuner. */
Vilntl6 ddefreq = 0: * See user manual for "hpe650x_ setDDCFrequency™ 2
Vilnt16 ddcbw — 8; /% See user manual for "hpe630x setDigitallFBandwidth"*/
Vilnt32 AnalogFilter = IF700KHZ: /* Other choices are 1F30KHZ or IFSMHZ */
ViBoolean suspend - TRIGGER: /* Choices are FREERUN or TRIGGER */
ViBoolean format = DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect — SRAM: /* Chotces are SRAM or LINKPORT */
ViBoolean output = VXIBUS; /* Choices are VXIBUS or PORT */

* Configure the receiver state, initialize all 1IFP's and TF's */
for(ifp - 0. ifp < SYSIFPS: ifp- +)

1
|

rcheck(hpe630x init(IFPvxilD[ifp]. VI_TRUE. VI_TRUE. &sessionID[ifp])):
for(chan = 0: chan < IFCHNLS; chan~+)
%

[nitialize the IF channels including establishing communication to their addresses. The initial frequency needs to be below 1 GHz.*/

rcheck(hpe630x_initlFChannel(sessionlD[ifp]. chan, TunerExists. finit. LO log addr{ ifp][chan]. OneG log addr[ifp][chan]. ThreeG_log _addr|
itp]| chan))):

1
)

/* Put all IFPs into monitoring mode */
for(ifp 0:ifp = SYSIFPS:ifpt+)
tor(mezz - 0. mezz - MEZZperlFP; mezz++)

rcheck(hpe650x setMonitoringMode(sessionlD[ifp]. mezz)):

* Synchronize clocks between all mezzanines and IFPs. The IFP at sessionID] 0] is always the master in this example.*/
ift VI_TRUE ~ SYNC CLOCKS)
g

#* Instructs the master IFP to send its clock out VXI. Since the sample clock is also the DSP clock. this action riskscausing the DSPs to hang. Therefore
all the modulues are also reinitialized to reboot the DSPs.*/

rcheek(ConfigureMasterTFP(sessionlD] 0)):
reheek(hpe630x init(IFPvxiID[IFT]. VI TRUE. VI_TRUE. &sessionID| TF11)):
for(chan — 0: chan = IFCHNLS: chan - +)

rcheek(hpe630x initIFChannel(sessionlD[1F1]. chan. TunerExists. finit. LO log addr| 1IF1][chan}]. OneG_log_addr| 1F1]f chan|.
ThreeG log addr| IF1][chan])):

for(mezz - 0: mezz < MEZZperlFI*: mezz- +)

rcheck(hpe630x setMonitoringMode(sessionID[IF1]. mezz)):
* Now configure all slave IFPs. The staves are instructed to accept the master clock. Finally. the slaves must be reinitialized to boot the DSPs.*/
for(itp - 11 ifp = SYSIFPS: ifp+-)

i
b

rcheck(ConfigureSlavelbFP(sessionID] 1fpl)):
reheck(hpe630x init(IFPvxilD[ifp]. VI TRUE. VI_TRUE. &sessionlD] itp])):
for(chan = 0: chan = IFCHNLS: chan—+)

rcheck(hpe650x initlFChannel(sessionID[ifp]. chan. TuncrExists. finit. 1LO_log_addrf ifp]f chan]. OneG_log addr| ifp]] chan].
ThreeG log addr| ifp][chan])):

for(mezz — 0: mezz < MEZZperlI'P; mezz+ t)
reheek(hpe630x setMonitoringMode(sessionlD| ifp]. mezz)):

|
i

/* Set up and tune the TFs */
for(itp 0:itp - SYSIFPS:ifp+ -)
for(chan 0: chan <= IFCHNLS: chan—~)

!
A

/* Set the tuner frequency to the value of "feenter™*/

rcheck(hpe630x setTunerFrequency(sessionID[ifp]. chan, feenter));

3-84 E6501A/E6502A/E6503A VX! Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

* Set the analog filter to either 30 kHz, 700 kiz or 8 MHz using "AnalogFilter”*/
rcheck(hpe650x_setAnalogFilter(sessionID[ifp], chan. AnalogFilter)):

* Activate autorange once after the initialization of each mezzanine */

rcheck(hpe630x activateAutoranging(sessionID]itp], chan));

v
i

/* Set up and tune DDCs */
for(ifp = 0z ifp =< SYSIFPS; ifp++)
for(mezz = 0; mezz < MEZZperlFP: mezz++)
{
/* The following function can be used for each DDC installed */
rcheek(hpe6350x_setDDCFrequency(sessionID[ifp]. mezz. DDC1, RELATIVE. ddcfreq)):
rcheck(hpe650x_setDDCFrequency(sessionID[ifp]. mezz. DDC5. RELATIVE. ddefreq)):
/* rcheck(hpe6350x_setDDCFrequency(sessionlD[ifp]. mezz. DDC2, RELATIVE. ddcefreq)):
rcheck(hpe630x_setDDCFrequency(sessionID[ifp]. mezz, DDC3, RELATIVE. ddefreq)):
rcheck(hpe630x_setDDCFrequency(sessionlD[ifp]. mezz, DDC4. RELATIVE, ddefreq)):*/
/* only need to call this function once per mezzanine */
rcheck(hpe630x_setDigitalIFBandwidth(sessionID[itp]. mezz. ddcbw)):
}
/* synchronize autoranging on all modules in system */
if{ VI TRUE —= SYNC_AUTORANGE)
{

/* sync autoranging on master channel */

reheek(ConfigureMasterChannel(sessionID[IFP1] IF1. &correction_RAMpg. &Gprofile. &Gsubprofile. &Gsystem)):

/* synch autoranging on the slave channels */
it IFCHNLS = 1)

rcheek(ConfigureSlaveChannel(sessionID[IFP1]. IF2. correction RAMpg. Gprofile, Gsubprofile. Gsystem)):

for(ifp = 1:ifp = SYSIFPS: ifp+-)
for(chan = 0: chan = IFCHNLS: chan—+))
rcheck(ConfigureSlaveChannel(sessionlD[ifp]. chan. correction_ RAMpg. Gprofile. Gsubprofile. Gsystem)):
}
* Setup to do the actual data capture */
for(ifp — 0. itp = SYSIFPS: ifpt 1)
for(mezz ~ 0: mezz <« MEZZperlFP: mezz++)

rcheck(hpe630x_setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDCL VI TRUE)):
TRUE)):
TRUE)):
TRUE)):
TRUE)):*/

reheck(hpe650x setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDCS. V

* rcheck(hpe630x setCaptureDataDDCNum(session]lD[ifp]. mezz. DDC2.V

rcheck(hpe630x setCaptureDataDDCNum(session]D[ifp]. mezz. DDC3.V
rcheck(hpe650x setCaptureDataDDCNum(sessionID[ifp]. mezz. DDCA. V

mSleep(50): /* allow for DDC transients */

rcheck(hpe630x setCaptureDataFormat(sessionD[ifp]. mezz. format)):
rcheck(hpe630x sctCaptureCollectln SRAM(sessionlD|ifp]. mezz. collect)):
reheck(hpe630x setCaptureDataOutput(sessionlD[ifp]. mezz. output)):
rcheck(hpet30x setSuspendedCapture Task(sessionID[ifp]. mezz. suspend)):

rcheck(hpe650x setNumberOfSamplesToCapture(sessionID]ifp). mezz. sample)):

rcheck(hpe650x_startCapture(sessionID[ifp], mezz));
1
1]
/* Synchronize all DDCs*/
rcheck(SynchronizeDDCs(SYSIFPS. sessionlD. MEZZperlFP)):
* Prearm -- required before arming. This stops any current activity */

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-85

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

for(ifp = 0: ifp < SYSIFPS: ifp++)
for(mezz = 0: mezz < MEZZperIFP: mezz++)
rcheck(hpe630x prearmDSPForDataCollection(sesstonlDJ tfp]. mezz)):
/* Arm the master DSP. The master is defined as sessionID{ 0] in this example. */
rcheck(hpe630x _armDSPForDataCollection(sessionID| 0], MEZZ1. VI_FALSE));
/* Arm the slave DSPs */
il MEZZperIFP - 1)
rcheck(hpe6350x armDSPForDataCollection(sessionID[0]. MEZZ2, VI_TRUE)):
if{ SYSIFPS = 1)
for(ifp = 1:ifp = SYSIFPS: ifp- t)
for(mezz = 0: mezz < MEZZperlFP: mezz++)
rcheck(hpe630x _armDSPForDataCollection(sesstonlD[ifp). mezz, VI TRUE)):
/* Prompt user for the tngger.*/
printf{"Fire the trigger. Press Enter to continuein™):
getchar();
/* sleep while data is captured */
mSieep(1000):
/* now stop capture process */
for(ifp = 0; ifp <* SYSIFPS: ifp++)
for(mezz = 0: mezz < MEZZperlFP; mezz+ +)
result = hipe6350x_ stopCapture(sessionlID[ifp]. mezz):
/* We've specified 0 samples above for indefinite capture.
Below. we pass &totlength into hpe650x getCaptureDigitallQData()
to tell the function the number of samples tor which we've
allocated space.
The remaining code only accommodates one IFP and two Mezzanines.
It will gather measurements taken from two DDCs.

The data output will be interlcaved:

[[ddc 1.0 Qlddet.0] I[ddc2.0] Qdde2.0]
Hddel 1] Qlddel. 1] I[dde2.1] Q[ddc2.1]

jddel.n] QOddel.n] [[dde2.n] Q[dde2.n]*/

/* Retrieve data from mezzanine 1 */
do
!
/* Loop until the DSP finishes giving us the data across the bus. Notice that we gather
a quantity of samples defined by "totlength”. which should be the total number of DDCs
enabled for capturing times "length.”In this example. we've enabled DDCT and DDCS,
each taking 2000 samples. making "totlength" equal to 4000.%/
result = hpe630x_getCaptureDigitallIQData(sessionID{ 0}. MEZZ1, IData. QData. &totlength):
} while (DATANOTREADY — result):
/* Output the captured data to the monttor or a file.*/

if(VI_SUCCESS - result)

(
t

/* This writes the [and Q data to the file results].txt in the same directory as the executable file. */
FILE *stream:
stream - fopen("mezlddel.txt™. "w").
for(i — 01 length:i++})
fprintf(stream. "%3d%5dn". [Data[i*2]. QData[i*2]):

felose(stream):

stream = fopen("meztddeS.axt”, "w");

for(i—0:1 < length: i++)

3-86 E6501A/E6502A/E6503A vXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

fprintf(stream, "%35d%3din". IData[i*2+1]. QData[1*2+ 1]):
felose(stream):
stream = fopen("mezlall.txt”, "w");
for(i—= 0.1 totlength: i-+)
fprintf(stream, "%5d%3d'n". IDataf i}. QData[i]):
fctose(stream):
/*This is a print statement to display the data on the monitor.*/
for(i = 0.1 < totlength; i++)
printf(” I] %dd] = %35d Q[%4d] = %5dn", i, IData[1]. i. QData[i]):

/* Retrieve data from mezzanine 2 */
do

]
v

/* Loop until the DSP finishes giving us the data across the bus. Naotice that we gather
a quantity of samples defined by “totlength”. which should be the total number of DDCs
enabled for capturing times "length."In this example, we've enabled DDC1 and DDCS5.
each taking 2000 samples. making "totlength” equal to 4000.*/
result — hpe650x getCaptureDigitallQData(sessionIDf 0]. MEZZ2. [Data. QData, &totlength):
} while { DATANOTREADY = result):
/* Qutput the captured data to the monitor or a file.*/
if(VI SUCCESS == result)
{
/* This writes the T and Q data to the file resultsl.txt in the same directory as the executable file. */
FILE *stream;
stream = fopen("mez2ddel txt". "w")
for(i = 0:i+ length: i+ t)
fprintf(stream. "%3d%5d'n". IData[i*2]. QData[i*2]):

felose(stream):

stream fopen("mez2ddeSaxt". "w")
for(i- 017 length: i+=)
fprintf(stream. "%3d%35dn". IData[1*2+1], QData[i*2+1])
felose(stream):
stream = fopen("mez2alltxt”, "w")
for(i=0:11otlength: 1++)
fprintf(stream, "%5d%5dn". [Data[i}. QData[i]):
felose(stream):
/*This is a print statement to display the data on the monitor.*/
for(1= 0:1 < totlength: i++)
printf(" I[%4d] = %3d Q[%4d] = %5dwn". i, IData[i}. i. QData[i]):

1
il

/* Close all 1FPs*/
for(ifp — 0:ifp < SYSIFPS; ifp+~)

rcheck(hpe650x_close(sessionID] ifp])):
return VI_SUCCESS:

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-87

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 5: Stream Digital I/Q Data Indefinitely to the Link Port
Using a Trigger

Use the following programming example to stream an indefinite number of
digital 1/Q data samples to the link port using a trigger to begin the streaming
process.

Figure 3-30 shows the main process steps for this scenario.

‘ Start Scenario 5 ’

A

initialize Modules / Open Select Monitoring Mode Synchronize Clocks for Setup Tuner and iF
VX! Sessions Triggering Channels

L»l Setup and Tung DDCs I-—-»l?ynchronize Autoranging H Sew;e%ist;;ecg/‘&ﬁg Get H Synchronize DDCs
> o P l I
rF reArm and Arm for Send Trigger l |

Trigger
L% Store / Display Data /L—P(Close VXi Sessiors)

Figure 3-30 Scenario 5: Stream Digital I/Q Data Indefinitely to the
Link Port Using a Trigger

{Insert Code to Get Data Step Capture Process
trom Link Ports) iop Lapty

T LT LT

Scenario 5:Stream digital 1Q data indefinitely to the link port

using a trigger.

Notes:

1. The following files must exist in the same directory as the

5

3

source code.

"hpe650x.h"

"commonex.h"

"commonex.¢”

"visatype h"

"vpptype.h”

. The file "hpe650x.1ib" must be availabte during linking.

3. This program requires the installation of SRAM on Mezzanine |

of the [F Processor whose VXI address is stored in IFPvxiID[0].

SRAM is also required on other mezzanines in the system

if more than one IFP exists or it MEZZperIFP is greater than 1.

The user should read through the code moditying the

following, as necessary:

a.

Constants that define the number of IF channels. TF

processors and mezzanines

Variables that define VXI addresses

SYNC AUTORANGE controls whether all IFP autoranging

is synchronized.

TuncrExists should be set to VI_TRUE if a tuner exists

otherwise is should be set to VI FALSE.

SYNC CLOCKS is set to VI_TRUE when coherent measurements

across multiple mezzanines and/or multiple IFPs is desived.

3-88 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

f. "fcenter" which defines the tuner's center frequency

2. "ddctreq" sets the frequency tuning of the DDCs relative
to the IF.

h. "ddcbw" sets the bandwidth of the DDCs. See the user

documentation for a table of appropriate values.

i "AnalogFilter”, "suspend”. "format”. "collect™ and "output”

can be set to predefined constants as described below.

5. The commands hpe650x_init(). hpe650x_initIFChannel() and
hpe650x_setMonitoringMode() must be exccuted before other
commands, such as hpe650x_setTunerFrequency().

6. To synchronize DDCs across multiple mezzanines, the third

parameter of hpe630x _armDDCsForSynchronization in "commonex.c"
must be set to VI TRUE. In addition. two trigger signals must
be sent from a external source to mezzanine 1.
7. IMPORTANT: In this example. the two trigger signals MUST be
sent when prompted. and BEFORE ANY SUBSEQUENT COMMANDS.

Disclaimer: This code is provided AS IS. It is a sample and unsupported.

*

#include ~stdlib.h

fiinclude <'stdio.h:

#define VISA

#include "hpe6S50x.h"

#include "commonex.h”

/* Number of IF channels */

#define IFCHNLS 1

7* Number of IF processors installed */

#define SYSIFPS |

/* Number of mezzanines per [FP */

fidefine MEZZperIFP - 2

* Extend for IFPs.
This is an array for which each element contains a VXTI address string.
This example shows a system with only one IFP. *;

ViRsre IFPvxiIDf SYSIFPS] - | "VXI0:43:INSTR")

/* Extend for IFs.
There are arrays for which cach element contains a VXI address integer.
The first dimension spans the system IFPs. The second dimension spans
the IF channels for cach IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. */

Vilnt32 LO log addr| SYSIFPS|[IFCHNLS] = { 41}:

Vilnt32 OneG log_ addr[SYSIFPS|[IFCHNLS| - [42}:

Vilnt32 ThreeG_log_addr] SYSIFPS][IFCHINLS] -~ { 40}

/* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI_TRUE") */

fidefine SYNC AUTORANGE VI FALSE

* If the tuner exists, this constant should be set to VI_ TRUE*/

#define Tunerkxists VI TRUE

/* Use this to switch on synchronized IFP clocks (VI_TRUE). This MUST be
done if there is more than one mezzanine on an IFP, even if only onc
mezzanine is used in the measurement. This is because the
trigger signal is propagated throughout multiple mezzanines.*/

#define SYNC_CLOCKS VI TRUE

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-89

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

R R KR R R R o K R R R R SR SRR RO SRR R A KRR R R R R R R

Don't change these. otherwise the code won't work anymore :-(
B R KRR R R AR R AR KR KR KRR R SRR R R R Rk
#define IF1 0
#define IF2 1
#define IFP1 0
#define MEZZ1 0
#define MEZZ2 1
#define DDC1 0
#detine DDC2 1
#define DDC3 2
#define DDC4 3
#define DDC5 4
#define IF30KHZ 0
#define TF700KHZ |
#define IFSMHZ 2
#define RELATIVEO
i#defineABSOLUTE 1
#define DATANOTREADY -1
#define CAPTURENOTRUNNING 0
#idefine CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0
#define ADCDATA |
#define VXIBUS 0
iidefine PORT 1
#define TRIGGER 1
#define FREERUN 0
#define SRAM |
#define LINKPORTO
PR SRR RO R ORI SOR R R R R KRR R R R R
/*

The macro 'rcheck’ saves the return status in the variable 'ret'.

If the return status indicates an error. reheck’ will call ‘error_exit'.

The 'rcheck’ macro requires variables 'ret’ and 'instrumentI)’ be detined.
*/
#define rcheck(A) (({result = Ay — VI SUCCESS) 7

(result) : (error exit{sessionID[ifploresudt. LINE | FILE)))
int maing)

Il
i

int itp, mezz. chan:

ViStatusresult;

ViSessionsessionID[SYSIFPS]:

Vilnt32 correction RAMpg, Gprofile. Gsubprofile. Gsystem:

Vilnt32 sample = 0: /¥ Number of samples or 0 if taking indefinite length. */
ViReal64 finit = 20e6: /* This number should be fess than 1 GHz.*/
ViReal64 feenter = 2600e6: * This number can be any valid frequency for the tuner.*/
Vilnt16 ddcfreq - 0: /* See user manuat for "hpe650x_setDDCFrequency”*/
Vilnt16 ddcbw = 8: /¥ See user manual for "hpe630x_setDigital IFBandwidth"*/
Vilnt32 AnalogFilter = [F700KHZ: /* Other choices are IF30KHZ or IFSMHZ *
ViBoolean suspend — TRIGGER: /* Choices are FREERUN or TRIGGER */
ViBoolean format — DIGITALIQ: /* Chotces are DIGITALIQ or ADCDATA */
ViBoolean collect - LINKPORT: /* Choices are SRAM or LINKPORT */
ViBoolean output — PORT; /* Choices are VXIBUS or PORT */

3-90 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

/* Configure the receiver state, initialize all I¥P's and IF's */
for(ifp = 0: ifp < SYSIFPS: ifp++)

/
1

rcheek(hpe650x_init(IFPvxilD[ifp]. VI_TRUE. VI TRUE, &sessionID[itp])):
for(chan — 0: chan = IFCHNLS: chan- +)
/* Initiatize the IF channels including establishing communication to their addresses. The initial

rcheck(hpe650x_initIFChannel(sessionID[ifp]. chan. TunerExists, finit. LO log_addr[ifp]{ chan],
ifpl{ chan])):

1
)

/* Put all IFPs into monitoring mode */
for(ifp - 0:ifp < SYSIFPS: ifp++)
for(mezz = 0; mezz < MEZZperIFP: mezz: +)
rcheck(hpe6350x sctMonitoringMode(sessionlD[ifp]. mezz)):
/* Synchronize clocks between all mezzanines and IFPs. The IFP at sessionID[0] is always the master in this
if(VI TRUE -+ SYNC CLOCKS)

/
1

/* Instructs the master IFP (o send its clock out VXI1. Since the sample clock is also the DSP clock. this
all the modulues are also renitialized to reboot the DSPs.*/

rcheck(ConfigureMasterIFP(sessionlD] 0])):
rcheck(hpe650x init{ IFPvxilD[IF1]. VI TRUE. VI_TRUE. &sessionID[IF1])):
for(¢han — 0: chan < IFCHNLS: chan)

rcheck(hpe650x_initlFChannel(sessionID[IF1]. chan. TunerExists. finit. LO_log_addr| IF1][chan],

ThreeG log_addr[IFI][chan])).
for{ mezz = 0; mezz < MEZZperlFP: mezz++)
rcheek(pe630x_setMonitoringMode(sessionID[IF1]. mezz)):
/* Now configure all slave [FPs. The slaves are instructed to accept the master clock. Finally. the slaves
for(ifp — 1. ifp < SYSIFPS:ifp+ +)

§
'

rcheck(ConfigureSlavelFP(sessionlD] ifp])):
rcheck(hpe650x init(IFPyvxilD[ifp]. VI TRUE, VI TRUE. &sessionID[itp])):
for(chan - 0: chan < IFCHNLS: chan~+),

frequency needs to be below | GHz.*/

OneG_tog_addr[ifp][chan], ThreeG log addr|

example.*/

action risks causing the DSPs to hang. Therefore

OneG log addr[IFT][chan].

must be reinitialized to boot the DSPs.*/

rcheck(hpe650x initIFChannel(sessionID[ifp|. chan. TunerExists. finit. LO log addr(ifp][chan]. OneG log_addr tfp]f chan].

ThreeG log addr[ifp][chan])):
for(mezz — 0: mezz - MEZZperlFP: mezz- +)
rcheck(hpe630x_setMonitoringMode(sessionID[ifp]. mezz)):

v
i

/* Set up and tune the IFs */
for(ifp — 0:ifp < SYSIFPS: ifpt+t)
for(chan - 0: chan -2 I[FCHNLS: chan~+)

1
t

/¥ Set the tuner frequency to the value of "feenter”*/
rcheck(hpe650x_setTunerFrequency(sessioniD)] ifp]. chan, fcenter)):
* Set the analog filter to either 30 kHz, 700 kHz or 8 MHz using "AnalogFilter"*/
rcheck(hpe650x _setAnalogFilter(sessionID{ifp]. chan, AnalogFilter)):
| * Activate autorange once after the initialization of cach mezzanine.*/

rcheck(hpe630x_activateAutoranging(sessionlD{ifp]. chan));

/* Set up and tune DDCs */

for{ mezz = 0; mezz < MEZZperlFP: mezz++)

|
\
‘
‘
for(ifp - 0; ifp < SYSIFPS; ifp++)
|
|

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-91

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

/* The following function can be used for each DDC installed */

rcheck(hpe650x setDDCFrequency(sessionID[ifp]. mezz. DDCI. RELATIVE. ddefreq)):

rcheck(hpe630x setDDCFrequency(sessionID[ifp]. mezz, DDC5, RELATIVE. ddefreq)):
* rcheck(hpe6350x setDDCFrequency(sessionID[ifp]. mezz, DDC2. RELATIVE. ddcfreq));

rcheck(hpe6350x_ setDDCFrequency(sessionID[ifp]. mezz. DDC3. RELATIVE. ddcfreq)):

rcheck(hpe6350x setDDCFrequency(sessionID[ifp], mezz. DDC4, RELATIVE, ddcfreq)):*/

/* only need to call this function once per mezzanine */

rcheck(hpe630x _setDigitalIFBandwidth(sessionID]ifp]. mezz. ddebw)):

b
b

/* synchronize autoranging on all modules in system */
if(VI TRUE -~ SYNC_AUTORANGE)

¢
t

/* sync autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionID[IFP1], IF1. &correction. RAMpg. &Gprofile, &Gsubprofile, &Gsystem)):
/* synch autoranging on the sfave channels */
if(IFCHNLS > 1)

rcheck(ConfigureSlaveChannel(sessionID[IFP1]. IF2. correction_RAMpg. Gprofile, Gsubprofile, Gsystem)):
for(itp — 1. ifp = SYSIFPS:ifpt +)

for(chan = 0: chan < IFCHNLS: chan+-)

rcheck(ContigurcSlaveChannel(sessionID[ifp]. chan. correction_RAMpe. Gprofile. Gsubprofile. Gsystem)):

1
i

/* Set up to do the actual data capture */
for(ifp - 0:ifp = SYSIFPS: ifpt +)
for(mezz - 0: mezz - MEZZperlFP: mezz~+)

1
i

rcheck{ hpe6350x setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDCI, VI_TRUL });

rcheek(hpe630xsetCaptureDataDDCNum(sessionlD]ifp]. mezz. DDCS. VI TRUE)):
* rcheck(hpe630x_setCaptureDataDDCNum(sessionID[ifp]. mezz. DDC2. VI TRUE)):

rcheck(hpe630x sctCaptureDataDDCNum(sessionID[ifp]. mezz, DDC3, VI_TRUE)):

rcheck(hpe650x setCaptureDataDDCNum(sessionlDfifp]. mezz, DDC4. VI_TRUE)):*/

mSleep(50); /* allow for DDC transients */ -

rcheck(hpe650x setCaptureDataFormat(sesstonlD[ifp], mezz. format)):

rcheck(hpe650x_setCaptureCollectmnSRAM(sessionIDJifp]. mezz, collect)):

rcheck(hpe6350x_setCaptureDataOutput(sessionID[ifp]. mezz. output)):

rcheck(hpe650x_setSuspendedCaptureTask(sessionID[ifp]. mezz. suspend)):

rcheck(hpe630x setNumberOQfSamplesToCapture(sessionID{ifp]. mezz. sample)):

reheck(hpe630x startCapture(sessionID[ifp]. mezz)):

]
s

/* Synchronize all DDCs*/
rcheck(SynchronizeDDCs(SYSIFPS, sessionlD. MEZZperlFP)):
/* Prearm -- required before arming. This stops any current activity.®/
for(ifp = 0 1fp < SYSIFPS: ifpt +)
for{ mezz = 0: merz < MEZZperlFP: mezz~+)

rcheck(hpe630x _prearmDSPForDataCollection(sessionID[ifp]. mezz)):

/* Arm the master DSP. The master is defined as sessionID[0] in this example.*/

rcheck(hpe650x_armDSPForDataCollection(sessionIDf 0], MEZZI, VI_FALSE)):

/* Arm the slave DSPs */
if{ MEZZperlFP - 1)
rcheck(hpe6350x armDSPForDataCollection(sessionID[0]. MEZZ2. VI_TRUE)):

3-92 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

I SYSIFPS = 1)
for(ifp = t:ifp < SYSIFPS: ifpt +)

for(mezz = 0; mezz = MEZZperlFP: mezz++)

rcheck(hpe650x_armDSPForDataCollection(sessionID[ifp]. mezz, VI_TRUE)):

/* Prompt user for the trigger.*/
printf("Fire the trigger. Press Enter to continue'n");
getchar():
* sleep while data is captured */
mSleep(1000):
/* now stop the capture */
for(ifp = 01 ifp = SYSIFPS; ifp+ -)
for(mezz = 0: mezz < MEZZperlFP: mezzt t)
rcheck(hpe6350x stopCapture(sessionID[ifp]. mezz)):
/* Close all IFPs*/
for(ifp = 05 ifp <~ SYSIFPS: ifp++)
rcheck(hpe630x close(sessionID[ifp])):
return VI SUCCESS:

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-93

S

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 6: Stream Digital 1/Q Data Indefinitely to the Link Port

Use the following programming example to stream an indefinite number of
digital I/Q data samples to the link port without the use of a trigger to begin
the streaming process.

Figure 3-31 shows the main process steps for this scenario.

‘ Start Scenaric 8 ’
Y

Initialize Modules / Open Select Monitoring Mods Setup Tuner and IF Setup and Tune DDCs
VXi Sessions Channels
Synchronize Autoranding Setup Capture Mode. (insert Code 1o Get Data Stop Capture
wynehronize Autoranging Start Capture from Link Ports) Stop Lap:
L—»/ Store / Display Data /L{ Ciose VX! Sessions)
SCCH

Figure 3-31 Scenario 6: Stream Digital I/Q Data Indefinitely to the Link Port

cenario 6:Stream dhgital IQ data indefinitely to the Link Port

without a trigger.

Notes:

. The following files must exist in the same directory as the
source code
"hpe650x.h"
"commonex.h”
"commonex.¢”
“visatype.h"
"vpptype "
. The file "hpe630x.1ib" must be available during linking.
. This program requires the installation of SRAM on Mezzanine |
of the IF Processor whose VX[address is stored in IFPvxilD[0]
SRAM is also required on other mezzanines in the system
if more than one IFP exists or if MEZZperIFDP is greater than 1.
The user should read through the code modifying the
following. as necessary:
A, Constants that define the number of IF channels, IF
processors and mezzanines
b. Variables that define VXI addresses
[SYNC AUTORANGE controls whether all IFP autoranging
is synchronized.
d. TunerExists should be set to VI_TRUE if a tuner exists

otherwise is should be set to VI_FALSE.

"feenter” which defines the tuner's center frequency

"ddefreq" sets the frequency tuning of the DDCs relative

1

to the IF.
h. “ddcbw" sets the bandwidth of the DDCs. See the user
documentation for a table of appropriate values.

i “AnalogFilter”, "suspend", "format”. "collect” and "output”

can be set to predefined constants as described below.,

3-94 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

5. The commands hpe630x_init(). hpe650x_initlFChannel() and
hpe650x_setMonitoringMode() must be executed before other

commands. such as hpe630x_set TunerFrequencey().

Disclaimer: This code is provided AS IS. It is a sample and unsupported.

#include “stdlib.h=

#include “stdio.hx

i#define VISA

#include "hpe650x.h"”

#include "commonex.h"

/* Number of IF channels */

#define IFCHNLS !

* Number of IF processors installed */

#define SYSIFPS 1

/* Number of mezzanines per IFP */

#define MEZZperlFP 2

/* Extend for IFPs.
This is an array for which each element contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre IFPvxiID[SYSIFPS} — { "VX10::43::INSTR"}:

* Lxtend for IFs.
There are arrays for which cach element contains a VXI address integer.
The first dimension spans the system [FPs. The second dimension spans
the IF channels for cach IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. *

Vilnt32 LO log addr| SYSIFPS]] IFCHNLS] = { 415

Vilnt32 OneG tog addr] SYSIFPS][IFCHNLS] - { 42}

Vilnt32 ThreeG log addr| SYSIFPS][[FCHNLS| — [40}

/* Use this to switch on sychronized autorange (Change "VI FALSE" to "VI_TRUE") */

#define SYNC AUTORANGE VI FALSE

* If the tuner exists. this constant should be set to VI_TRULE*/

#define TunerExists VI TRUE

R R HOR R SOK R R R R R RO R R R R R R KR KR KR K K

Don't change these. otherwise the code won't work anymore :-(

ek kAR KRR R R R R R R R R R ok R R R R KRR KKk

#definc IF1 0

#define IF2 1

#define IFP1 0

#define MEZZ1 0

Zdefine MEZZ2 |

#define DDC1 0

#define DDC2

#define DDC3 2

#define DDC4 3

f#define DDCS 4

#define IF30KHZ. 0

Zdefine IF700KHZ |

#define IFSMHZ 2

#define RELATIVED

£defineABSOLUTE 1

#define DATANOTREADY -1

#define CAPTURENOTRUNNING 0

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-95

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

#define CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0
#define ADCDATA 1
#define VXIBUS 0
#define PORT 1
#define TRIGGER 1
#define FREERUN 0
#define SRAM 1
#define LINKPORTO
R A KRR A R K K AR R K ok KA KK
/* The macro 'reheck’ saves the return status in the variable ret',
If the return status indicates an error. 'reheck’ will call ‘error exit'.
The 'reheek’ macro requires variables ret” and 'instrumentID’ be defined. */
#define rcheck(A) (((result = A) == VI SUCCESS) 7+
(result) @ (error exit(sessionID[ifplresult. LINE . FILE)))
int main()

¢
\

int itp, mezz, chan;

ViStatusresult;

ViSessionsessionID[SYSIFPS]:

Vilnt32 correction_RAMpg. Gprofile. Gsubprofile. Gsystem:

Vilnt32 sample = (: /¥ Number of samples or 0 if taking indefinite length. */
ViReal64 finit -~ 20e6: [* This number should be less than 1 GHz.*/
ViReal64 feenter — 2600e0; /* This number can be any valid frequency for the tuner.*/
Vilntl6 ddefreq - 0: /* Sece user manual for "hpe650x setDDCFrequency™*/
Vilntl6 ddebw - 8: See user manual for "hpe630x_setDigitallFBandwidth"*/
Vilnt32 AnalogFilter — [F700KHZ: /* Other choices are [F30KHZ or IFSMHZ *
ViBoolean suspend - FREERUN: /* Choices are FREERUN or TRIGGER */
ViBoolean format - DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA i
ViBoolean collect -~ LINKPORT: /* Choices are SRAM or LINKPORT *

ViBoolean output - PORT: * Choices are VXIBUS or PORT */
/* Configure the receiver state. initialize all IFP's and IF's */
for(itp - 0 ifp - SYSIFPS: ifp-+)

f
\

rcheck(hpe650x init(IFPvxilD[ifp]. VI TRUE. VI TRUE. &sessionlD] ifp])):
for(chan -- 0: chan = IFCHNLS: chan - 1)
* Initialize the IF channels including establishing communication to their addresses. The initial

rcheck(hpe630x_initlFChannel(sessionID[ifp]. chan. TunerExists. finit. LO_log_addr[ifp}{ chan].
ifp][chanl)):

1
)

/* Put all IFPs into monitoring mode */
for(ifp — 0: ifp = SYSIFPS: ifp++)
for(mezz — 0:mezz -+ MEZZperlFP; mezz +~)
rcheck(hpe6350x setMonitoringMode(sessionlD[ifp]. mezz)):
/* Sct up and tune the IFs */
for(ifp - 0. ifp = SYSIFPS: ifp- +)
for(chan - 0: chan - IFCHNLS: ¢chan~+)

¢
\

* Set the tuner frequency to the value of "fcenter”*/
rcheck(hpe630x _setTunerFrequency(sessionlD[ifp]. chan, feenter)):
* Set the analog filter to either 30 kHz, 700 kHz or 8 MHz using "AnalogFilter"*/

rcheck(hpe6350x _setAnalogFilter(sessionID{ifp]. chan. AnalogFilter)):

/* Activate autorange once after the initialization of each mezzanine. */

frequency needs to be below | GHz.*/

OneG_log _addr[ifp]] chan]. ThreeG log addr|

3-96 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

reheck(hpe650x activateAutoranging(sessionID|ifp]. chan)):

/* Set up and tune DDCs */
for(ifp == 0. ifp == SYSIFPS: ifpt)
for(mezz = 0; mezz < MEZZperlFP:; mezz++)
!
/* The following function can be used for each DDC installed */
rcheck(hpe650x_setDDCFrequency(sessionID[ifp]. mezz. DDCL. RELATIVE. ddcfreq)):
rcheck(hpe630x_setDDCFrequency(sessionID[ifp]. mezz. DDCS. RELATIVE. ddcefreq)):
* rcheck(hpe650x_setDDCFrequency(sessionID[ifp]. mezz. DDC2. RELATIVE. ddcfreq));
rcheck(hpe650x setDDCFrequency(sessionID[ifp]. mezz. DDC3. RELATIVE. ddcfreq));
rcheck(hpe630x setDDCFrequency(sessionID[ifp]. mezz, DDC4, RELATIVE. ddefreq)):*/
/* only need to call this function once per mezzanine */
rcheck(hpe630x setDigitalIFBandwidth(sessionID[ifp], mezz. ddebw)):
H
/* synchronize autoranging on all modules in system */
ift VI TRUE —= SYNC_AUTORANGE)
!
/* sync autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionID[IFP1]. IF1. &correction RAMpg. &Gprofile. &Gsubprofile.

/* synch autoranging on the slave channels */

i IFCHNLS = 1)

&Gsystem)):

rcheck(ConfigureSlaveChannel(sessionID] IFP1]. IFF2, correction RAMpg. Gprofile, Gsubprofile, Gsystem)):

for(ifp — 1. ifp < SYSIFPS: ifp+ -)
for(chan — 0: chan < IFCHNLS: chan++)

rcheck(ConfigureSlaveChannel(sessionID] ifp]. chan. correction. RAMpy. Gprofile. Gsubprofile.

v
)

/* Set up to do the actual data capture */

for(ifp - 0:ifp < SYSIFPS: ifp+ +)
for{ mezz = (0. mezz < MEZZperlFP: mezz- t)

¢
b

rcheck(hpe650x setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDCI, VI_TRUL)):
rcheck(hpe6350x setCaptureDataDDCNum(session]D[ifp]. mezz, DDC3. VI_TRUE)):
* rcheck(hpe650x setCaptureDataDDCNum(sessionID[ifp]. mezz, DDC2. VI_TRUE)):
reheck(hpe630x_setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDC3. VI TRUE)):
rcheck(hpe650x_setCaptureDataDDDCNum(sessionID[ifp]. mezz. DDC4. VI TRUE)):*/
mSleep(50): /* allow for DDC transients */
rcheek(hpe6350x setCaptureDataFormat(sessionlD[ifp]. mezz. format)):
rcheck(hpe630x setCaptureCollectinSRAM(sessionlD[ifp). mezz. collect)):
rcheck(hpe630x sctCaptureDataOutput(sessionlD{ifp]. mezz. output)):
rcheck(hpe630x setSuspendedCaptureTask(sessionID[ifp]. mezz. suspend)):
rcheck(hpe6350x_setNumberOfSamplesToCapture(sessionID[ifp]. mezz. sample }):
rcheck(hpe630x_startCapture(sessionID[ifp]. mezz)):
j
/* Prompt the user to stop the data capture. */
printf{"Data Streaming from Link Port. Press Enter to stop capturein”):
getchar():
/* Stop the data streaming */
for(ifp - O: ifp <= SYSIFPS: ifp++)
for{ mezz — 0: mezz < MEZZperlFP; mezz—+)

rcheck(hpe630x_stopCapture{ sessionlD[ifp]. mezz)):

/* Close all IFPs*/

for(ifp ~ 0:ifp - SYSIFPS:ifpt i)
p P

(Gsystem)):

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-97

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

reheek(hpe630x_ close(sessionID[ifp])):

return VI SUCCESS:

3-98 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

Scenario 7: Stream N Samples of Digital 1/Q Data to the Link Port

Use the following programming example to stream a specified number of
digital I/Q data samples to the link port without the use of a trigger to begin
the streaming process.

Figure 3-32 shows the main process steps for this scenario.

‘ Start Scenario 7 }

A

Initialize Modules / Open Select Mornitoring Mode Setup Tuner and IF Setup and Tune DDCs
VXi Sessions V Channels

. o Setup Capture Mode, (insert Code to Get Data
Synehronize Autoranging Start Capture from Link Ports)

l-——»/ Store / Display Data /Lbcc‘.lose VXI Sessions)

Figure 3-32 Scenario 7: Stream N Samples of Digital 1/Q Data to the Link Port

Scenario 7:Stream n-samples of digital [Q data to the Link Port

without a trigger.

Notes:

1. The following files must exist in the same directory as the

source code.

"hpe6350x.h"

"commonex.h”

"commonex.¢”

“visatype.h"

"vpptype.h”

2. The file "hpe650x.1ib" must be available during linking.

3.

The user should read through the code modifying the

following. as necessary:

a.

Constants that define the number of IF channels. IF
processors and mezzanines

Variables that define VXI addresses

SYNC AUTORANGE controls whether all IFP autoranging
is synchronized.

TunerExists should be set to VI TRUE if a tuner exists
otherwise is should be set to VI_FALSE.

"feenter” which defines the tunert's center frequency
"ddefreq” sets the frequency tuning of the DDCs relative
to the [F.

"ddcbw" sets the bandwidth of the DDCs. See the user
documentation for a table of appropriate values.
"AnalogFilter”. "suspend”. "format”. "collect” and "output”

can be set 1o predefined constants as described below.

‘The commands hpe630x _init(), hpe650x_initIFChannel() and

hpe650x setMonitoringMode() must be executed before other

commands, such as hpe650x_setTunerkFrequency().

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-99

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Disclaimer: This code is provided AS IS. It is a sample and unsupported.

*
i

#include ~“stdlib.hi-

#include <stdio.h>

#define VISA

Zinclude "hpe650x.h”

#include "commonex.h"

/* Number of IF ¢channels */

#define IFCHNLS I

/* Number of IF processors installed */

i#define SYSIFPS |

/* Number of mezzanines per [FP */

#define MEZZperlFP 2

/* Extend for IFPs,
This is an array for which each clement contains a VXI address string.
This example shows a system with only one 1FP. */

ViRsre IFPvxilD} SYSIFPS] = { "VXI10::43:INSTR"}:

/* Extend for 1Fs.
There are arrays for which cach element contains a VXI address integer
The first dimension spans the system IFPs. The second dimension spans
the [F channels for each IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. */

Vilnt32 LO_log addr] SYSIFPS][IFCHNLS] = { 41}:

Vilnt32 OneG log addr[SYSIFPS][IFCHNLS] - { 42}:

Vilnt32 ThreeG_log addr| SYSIFPS]| IFCHNLS] = { 40}:

/* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI TRUE") */

#define SYNC AUTORANGE VI FALSE

i If the tuner exists. this constant should be set to VI TRUE*/

#define Tunerkxists VI TRUE

L e L

Don't change these. otherwise the code won't work anymore :-(

SRR R R KR R R R Rk R R R R RO R R

#define IF1 0

#define IF2]

#define IFP1 0

#define MEZZ1 0

#define MEZZ2 |

#define DDCI 0

#define DDC2 |

#define DDC3 2

#define DIDC4 3

#define DDC5 4

#define IF30KHZ 0

#define IF700KHZ |

#define IFSMHZ 2

#define RELATIVEO

#defineABSOLUTE |

#define DATANOTREADY -1

fidefine CAPTURENOTRUNNING 0

#define CAPTUREDATANOTREADY 2

#define CAPTUREDATAREADY 3

#define DIGITALIQ 0

3-100 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

#detine ADCDATA 1
#define VXIBUS 0
#define PORT !
#define TRIGGER 1
#define FREERUN 0
#define SRAM I

#define LINKPORTO
3 o e e sk o ok ok ok ok ok oKk Kok 3 ok ok ok ok ok ok ok e skok sk ok ok sk ok ok ok ok ok o kK ke sk ke ok ok sk ok ok sk oK koK KOk ok K ok stk okl ok ok ok ok R kokok ok
* The macro 'reheck’ saves the return status in the variable ret'.
If the return status indicates an ervor. rcheck’ will call "error_exit'.
The 'reheck’ macro requires variables 'ret’ and 'instrumentID’ be defined. */
#dcfine reheck(A) (((result = A) == VI SUCCESS) 7
{result) : (error exit(sessionlD[ifplresult. LINE . FILE })))
int main{)

i
L}

int ifp. mezz, chan:
ViStatusresult:
ViSessionsessionlD[SYSIFPS}:

Vilnt32 correction RAMpg. Gprofile. Gsubprofile. Gsystem:

Vilnt32 sample = 2000: /* Number of samples or 0 if taking indefinite length. */
ViReal64 finit ~ 20¢6: /* This number should be less than 1| GHz.*/
ViReal64 feenter - 2600c6; * This number can be any valid frequency for the tuner */
Vilnt16 ddefreq — 0: * See user manual for "hpe650x setDDCFrequency™*/
Vilntl6 ddcbw — &: /* See user manual for "hpe650x setDigitallFBandwidth"*/
Vilnt32 AnalogFilter - IF700KHZ: /* Other choices are [F30KHZ or IFEMHZ */
ViBoolean suspend = FREERUN: /* Choices are FREERUN or TRIGGER */
ViBoolecan format — DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect — LINKPORT: * Choices are SRAM or LINKPORT */
ViBoolean output - PORT: /* Choices are VXIBUS or PORT */
/* Configure the receiver state. initialize all [FP's and 1F's */

for(ifp - 0: ifp = SYSIFPS: ifp~+)

(
t

rcheck(hpe630x init(IFPvxilD[ifp]. VI TRUE. VI_TRUL. &sessionlD] ifp])):
for(chan = 0: chan < IFCHNLS: chan- +)
IE

/ Initialize the IF channels including establishing communication to their addresses. The imitial

rcheck(hpe650x _initIFChannel(sessionID{ ifp]. chan. TunerExists. finit. LO_log_addr[ifp]{ chan].
ifp][chan])):

1
il

/* Put all [FPs into monitoring mode */
for(ifp - 0:ifp = SYSIFPS: ifp+t)
for(mezz — (: mezz - MEZZperlFP: mezz+-)
rcheck(hpe630x setMonitoringMode(sessionlD] itp]. mezz)):
/* Set up and tune the IFs */
for(ifp - 0: ifp <= SYSIFPS: ifp~ +)
for(chan = 0: chan << IFCHNLS: chan~+)

1
\

* Set the tuner frequency to the value of "fcenter"*/

rcheck(hpe630x_setTunerFrequency(sessionID[ifp]. chan. feenter)):

* Set the analog filter to either 30 kHz. 700 kiiz or 8 MHz using "AnalogFilter"*/
rcheck(hpe650x_setAnalogFilter(sessionID[ifp]. chan, AnalogFilter)):

/* Activate autorange once after the initialization of each mezzanine.*/

rcheck(hpe630x_activateAutoranging(sessionID[ifp]. chan)):

frequency needs to be below 1 GHz.*/

OneG log addr| ifp][chan]. ThreeG log addrf

E6501A/E6502A/E6503A VX! Receiver User's Guide 3-101

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

/* Set up and tune DDCs */
for(ifp = 0:ifp = SYSIFPS: ifpt 1)
for(mezz = 0: mezz < MEZZperIFP; mezz+ 1)

1
1

/* The following function can be used for each DDC installed */

rcheck(hpe650x_setDDCFrequency(sessionID{ifp]. mezz. DDC1. RELATIVE. ddctreq)):

rcheck(hpe650x_setDDCFrequency(sessionID]ifp]. mezz. DDC3. RELATIVE. ddctreq)):
/* rcheck(hpe650x setDDCFrequency(sessionID]ifp], mezz. DDC2. RELATIVE. ddefreq)):

rcheck(hpe650x_setDDCFrequency(sessionlD[Hp]. mezz. DDC3. RELATIVE. ddcfreq)):

rcheck(hpe630x setDDCFrequency(sessionlD[ifp]. mezz, DDC4. RELATIVE. ddefreq)):*/

/* only need to call this function once per mezzanine */

rcheck(hpe650x _setDigitalIFBandwidth(sessionlD[ifp]. mezz. ddebw)):

1
i

/* synchronize autoranging on all modules in system */
iff VI TRUE —— SYNC AUTORANGE)
!
/* syne autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionID{ IFP1]. IF1, &correction RAMpg. &Gprofile, &Gsubprofile, &Gsystem)):
/* synch autoranging on the slave channels */
if(IFCHNLS = 1)
rcheek(ConfigureSlaveChannel(sessionlD[IFP1]. IF2, correction RAMpyg. Gprofile. Gsubprofile. Gsystem)):
for(ifp — 11 ifp << SYSIFPS: ifp+~)
for(chan = 0: chan < IFCHNLS: chant +)

rcheck(ConfigureSlaveChannel({ sessionlD[ifp]. chan. correction_RAMpyg. Gprofile. Gsubprofile. Gsystem));

/* Set up to do the actual data capture */
for(ifp -- 0; ifp <= SYSIFPS: ifp~+)
for(mezz = 0: mezz < MEZZperlFP: mezzt -)

'
\

rcheck(hpe650x setCaptureDataDDCNum(sessionID[itp]. mezz. DDCi. VI_TRUE)):
rcheek(hpe650x_setCaptureDataDDCNum(sessionID]ifp]. mezz. DDCS. VI TRUE)):
/* rcheck(hpe650x setCaptureDataDDCNum(sessionID[itp]. mezz. DDC2. VI _TRUE)):
rchieck(hpe630x_setCaptureDataDDCNum(sessionID]ifp]. mezz, DDC3. VI TRUE)):
rcheck(hpe650x_setCaptureDataDDCNum(sessionID{ifp]. mezz. DDC4. VI TRUE)):*/
mSleep(50): /* allow tor DDC transients */
rcheck(hpe6350x setCaptureDataFormat(sessionlD[ifp]. mezz. format)):
rcheck(hpe650x setCapturcCollectinSRAM(sessionlDfifp]. mezz. collect)):
reheck(hpe630x setCaptureDataOQutput{ sessionID[ifp]. mezz, output)):
rcheck(hpe630x setSuspendedCapture Task(sessionID[ifp]. mezz. suspend)):
reheck(hpe630x setNumberQfSamples ToCapture(sessionID[ifp]. mezz. sample)):
rcheck(hpe650x startCapture(sessionID[ifp]. mezz)):
;
/* Insert your code here for capturing data from the fink ports.*/
* Prompt user to continue*/
printf("N samples has streamed from Link Port. Press Enter to close session.':n"):

getchar():

/* Close all IFPs*/
for(ifp - 0: ifp < SYSIFPS; ifpt-+)

rcheck(hpe650x close(sessionIDY ifp])):
return VI_SUCCESS;

3-102 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 8: Stream N Samples of Digital 1/QQ Data to the Link Port
Using Multiple Triggers

Use the following programming exampie to stream a specified number of
digital 1/Q data samples to the link port using multiple triggers to begin the

streaming process.

Figure 3-33 shows the main process steps for this scenario.

‘ Start Scenario 8)

VXI Sessions

Initialize Modules / Open |31 gelect Monitoring Mode |

Synchronize Clocks for
Triggering

Setup Tuner and tF
Channels

L] Setup and Tune DDCs |~ Synchronize Autoranging 3w

Setup Capture Mode, Get
Ready to Capture

Synchronize DDCs

PreArm and Arm for

’ Trigger

— Send Triggers —] {

tinsert Code to Get Data
from Link Ports)

>

Stop Capture Process

———

—4 Store / Display Data H Close VXI Sessions)

Figure 3-33 Scenario 8: Stream N Samples of Digital 1/Q Data to the Link Port Using

Multiple Triggers

/* Scenario 8:Stream n-samples of Digital 1Q data out the link port

using multiple triggers.

Notes:

1. The following files must exist in the same directory as the

source code.

"hpe630x.h"

"commonex.h”

"commonex.c”

"visatype.h"

"vpptype.h”

2. The file "hpe630x.Hb" must be available during linking.

3.

‘The user should read through the code modifying the

following. as necessary:

a.

Constants that define the number of IF channels, IF
processors and mezzanines

Variables that define VXI addresses

SYNC AUTORANGE controls whether all IFP autoranging
is synchronized.

TunerExists should be set to VI_TRUE if a tuner exists
otherwise is should be set to VI FALSE.

SYNC CLOCKS is set to VI TRUE when coherent measurements
across multiple mezzanines and/or multiple IFPs is desired.
"feenter” which defines the tuner's center frequency
"ddefreq” sets the frequency tuning of the DDC's relative

to the IF.

"ddebw” sets the bandwidth of the DDCs. See the user

documentation for a table of appropriate values.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-103

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

1. "AnalogFilter”, "suspend”. "format”, "collect” and "output”

can be set to predefined constants as described below.

4. The commands hpe630x_init(), hpe650x_initIFChannel() and
hpe630x_setMonitoringMode() must be executed before other

commands. such as hpe650x_setTunerfrequency().

w

To synchronize DDCs across multiple mezzanines. the third

parameter of hpe630x_armDDCsForSynchronization in "commonex.c”

must be set to VI TRUE. In addition. two trigger signals must

be sent from a external source to mezzanine 1.

6. IMPORTANT: In this example, the two trigger signals MUST be

sent when prompted. and BEFORE ANY SUBSEQUENT COMMANDS . Two

trigger signals must be sent for each trigger event.

Disclaimer: This code is provided AS IS. It is a sample and unsupported.

*/

#include <stdlib.hz

#include <stdio.hx

#define VISA

#include "hpe650x.h"

#include “commonex.h”

/* Number of IF channels */

#define IFCHNLS |

/* Number of IF processors installed */

#define SYSIFPS t

/* Number of mezzanines per [FP */

#detine MEZZper[FP 2

/* Extend for IFPs.
This is an array for which each element contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre IFPvxiIDf SYSIFPS] = { "VX10::43:INSTR"};

/* Extend for IFs
There are arrays for which each element contains a VXI address integer.
The first dimension spans the system IFPs. The second dimension spans
the IF chamnels for each IF processor. This example shows the VXI
module addresses for one 3 Gliz tuner. */

Vilnt32 LO_log_addr[SYSIFPS]| IFCHNLS] = [41}

Vilnt32 OneG_log addr[SYSIFPS][[FCHNLS| = { 423}:

Vilnt32 ThreeG log addr[SYSIFPS][IFCHNLS] = { 40}

/* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI TRUE") */

#define SYNC_AUTORANGE VI _FALSE

/* If the tuner exists. this constant should be set to VI TRUE*/

#define TunerExists VI TRUE

/* Use this to switch on synchronized TFP clocks (VI_TRUL). This MUST be
done if there is more than one mezzanine on an IFP, even if only one
mezzanine is used in the measurement. This is because of how the
trigger signal is propagated throughout multiple mezzanines.*/

#define SYNC. CLOCKS VI_TRUL

3-104 E6501A/E6502A/E6503A VXI Receiver User’s Guide

R KRR KRR KR R Rk RO R R R R R R R

Don't change these. otherwise the code won't work anymo

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

ok R ok ok ok R Rk sk Rk ok o

re 1-(

ek ok ok o oKk ok K ok ok o R s sk ok e e o kel ol sl ok e ok ke o ok R ok R ROk R SOk SOk ROk ok Kok R ok Rk R R Rk ROk Rk R R Rk k)

#define IF1 0

#define IF2 |

#define IFPL O

#define MEZZ1 0

#define MEZZ2 |

#define DDC1 0

#define DDC2 |

#define DDC3 2

#define DDC4 3

#define DDC5 4

#define [F30KHZ 0

#define IF700KHZ 1

#define [FRMHZ 2

#define RELATIVED
#defineABSOLUTE 1

#define DATANOTREADY -1
#define CAPTURENOTRUNNING 0
fidefine CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
itdefine DIGITALIQ 0

fidefine ADCDATA 1

i#define VXIBUS 0

#define PORT 1

#define TRIGGER 1

#define FREERUN 0

#define SRAM |

#define LINKPORTO

A R ok ok ol ROk koK o ok ks R R sk R Sk R R K o R R KR koK ok ok Rk ok R K K R KR kR ke sk Rk ok R ROk ok ok

i*

The macro 'rcheck’ saves the return status in the variable 'ret'.

I the return status indicates an error. 'rcheck’ will call "error_exit'.

The 'rcheck’ macro requires variables 'ret’ and 'instrumentID’ be defined.

*/
#define reheck(A) (((result = A) — - VI_SUCCESS) ?

(result) : (ervor_exit(session{D[itp}.result, LINE _ FILE
it main()

]
l

int ifp. mezz, chan:

ViStatusresult;

ViSessionsessionlD[SYSIFPS]:

Vilnt32 cotrection RAMpg. Gprofile. Gsubprofile,

)

Gsystem:

Vilnt32 sample — 2000: /* Number of samples or 0 if taking indefinite length. */
Vilnt32 numberoftriggers — 3:

ViReal64 finit = 20e6: * ‘This number should be less than | GHz.*/
ViReal64 feenter = 2600¢6:; * This number can be any valid frequency for the tuner.*/
Vilntl6 ddefreq = O: /* See user manual for "hpe650x_setDDCFrequency"*/
Vilnt16 ddcbw — 8: /¥ See user manual for "hpe650x_setDigitalIFBandwidth"*/
Vilnt32 AnalogFilter = IF700KHZ; /* Other choices are IF30KHZ or IFSMHZ */
ViBoolean suspend = TRIGGER: /* Choices are FREERUN or TRIGGER */
ViBoolean format = DIGITALIQ: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect -~ LINKPORT: /* Choices are SRAM or LINKPORT */
ViBoolean output == PORT; /* Choices are VXIBUS or PORT */

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-105

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

/* Contigure the receiver state, initialize all IFP's and IF's */
for(ifp - 0z ilp = SYSIFPS: ifp++)

1
\

rcheck(hpe650x_init(IFPvxiID[ifp]. VI_TRUE. VI_TRUE, &sessionID[ifp])):
for(chan — 0: chan < IFCHNLS; chan+ +)
%

/ Initialize the IF channels including establishing communication to their addresses. The initial

rcheck(hpe650x_initIFChannel(sessionID[ifp]. chan. TunerExists. finit. LO_log_addr(ifp][chan].
ifp|f chan])):

]
i

/* Put all 1FPs into monitoring mode */
for(ifp — 0. ifp = SYSIFPS: ifpt 1)
for(mezz = 0; mezz < MEZZperlFP: mezzi)
rcheck(hpe650x setMonitoringMode(sessionID[ifp]. mezz)):
* Synchronize clocks between all mezzanines and IFPs. The IFP at sessionID[0] is always the master in this
ifl VI_TRUE — SYNC CLOCKS)
|

l

/* Instructs the master IFP to send its clock out VXI. Since the sample clock is also the DSP clock, this
all the modulues are also reinitialized to reboot the DSPs.*/

rcheck(ConfigureMasterIFP(sessiontD[0)):
rcheck(hpe630x init(IFPvxilD[IF1]. VI TRUE. VI TRUE. &sessionlD[IF1])):
for(chan 0: chan = IFCHNLS: chan - +)

rcheck(hpe650x initlFChannel(sessionID[TF1]. chan, TunerExists. finit. LO log addr[IF1][chan].

ThreeG fog_addr| IF1][chan])):
for(mezz — 0. mezz = MEZZperlFP: mezz-+)
rcheck(hpe650x setMonitoringMode(sessionID[IF1]. mezz)):
/* Now configure all slave [FPs. The slaves are instructed to accept the master clock. Finally. the staves
for(ifp - 1 ifp = SYSIFPS: ifp-+)

rcheck(ConfigureSlavelFP(sesstonID[ifp])):
rcheck(hpe630x init(IFPvxilD[ifp]. VI_TRUE, VI_TRUE. &sessionlD{ ifp])):
for(chan - 0: chan -~ IFCHNLS: chan++)

frequency needs 1o be below | GHz.*/

OneG_log_addr[ifp][chan]. ThreeG log_addr]

example.*/

action risks causing the DSPs to hang. Therefore

OneG log addr] IF1]f chan].

must be reinitialized to boot the DSPs */

rcheck(hpe650x initlFChannel(sessionID] ifp). chan. TunerExists. finit. LO log addr[fp][chan]. OncG log addr| ifp]| chan].

ThreeG log_addr[ifp}[chan])):
for(mezz - 0; mezz - MEZZperlFP: mezz+-)
rcheck(hpe6350x setMonitoringMode(sessionlD[ifp]. mezz)):

i
s

/* Set up and tune the IFs *
for(ifp - 0:1fp < SYSIFPS: ifp—+)
for(chan = 0: chan -7 IFCHNLS: chan++)
!
/* Set the tuner frequency to the value of "feenter"™*/
rcheck(hpe650x_ setTunerFrequency(sessionID] ifp]. chan. feenter }):
* Set the analog filter to either 30 kHz, 700 kHz or 8 MHz using "AnalogFilter"*/
reheck(hpe630x setAnalogFilter(sessionID]ifp]. chan, AnalogFilter)):
/¥ Activate autorange once after the initialization of each mezzanine.*/

reheck(hpeG50x activateAutoranging(sessionID[ifp], chan)):

/* Set up and tune DDCs */
for(ifp 0. ifp = SYSIFPS:ifpt +)

3-106 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

for(mezz -~ 0: mevz = MEZZperlbP:; mezz - +)

!
1

/* The following function can be used for each DDC installed */

rcheck(hpe630x setDDCFrequency(sessionlD[ifp], mezz. DDCI. RELATIVE. ddefreq)):

rcheck(hpe630x_setDDCFrequency(sessionlD[ifp], mezz. DDCS, RELATIVE, ddefreq)):
/* rcheck(hpe650x_setDDCFrequency(sessionlD[ifp]. mezz. DDC2, RELATIVE., ddcfreq)):

rcheck(hpe630x setDDCFrequency(sessionID[ifp]. mezz, DDC3. RELATIVE. ddcfreq)):

rcheck(hpe630x_setDDCFrequency(sessionIDfifp]. mezz. DDC4. RELATIVE. ddcfreq)).*/

/* only need to call this function once per mezzanine */

rcheek(hpe630x_setDigital IFBandwidth(sessionID[ifp], mezz. ddcbw)):

'
i

* synchronize autoranging on all modules in system */
ift VI TRUE -~ SYNC_AUTORANGE)

¢
t

/* sync autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionID[IFP1]. IFI. &correction RAMpg. &Gprofile, &Gsubprofile. &(system)):
/* synch autoranging on the slave channels */
if{ IFCHNLS = 1)

rcheck(ConfigureSlaveChannel(sessioniD[1FP1]. IF2. correction_ RAMpg. Gprotile, Gsubprofile, Gsystem)):
for(ifp = 1; ifp < SYSIFPS; ifp-+)

for(chan == 0: chan < IFCHNLS: chan++)

rcheck(ConfigureSlaveChannel(sessionID| ifp]. chan. correction_RAMpg. Gprofile. Gsubprofile, Gsystem)):

1
i

* Set up to do the actual data capture */
for(ifp - 0:ifp <~ SYSIFPS: ifp++)
for(mezz — 0. mezz < MEZZperlFP: mezz++)

¢
\

rcheck(hpe6350x setCaptureDataDDCNum(sessionID|ifp]. mezz. DDC1. VI_TRUL));

reheck(hpe630x setCaptureDataDDCNum sessioniD[ifp]. mezz. DDC3. VI TRUE)):
i* rcheck(hpe630x_setCaptureDataDDCNum(sessionID[ifp]. mezz. DDC2. VI TRUL }):

rcheck(hpe630x_setCaptureDataDDCNum(sessionID[ifp]. mezz, DDC3. VI TRUL)):

rcheek(hpe630x_setCaptureDataDDCNum(sessionID[ifp]. mezz. DDC4. VI TRUE)):#/

mSleep(50} /* allow for DDC transients */

rcheck(hpe630x setCaptureDataFormat(sessionlD{ifp]. mezz. tormat)):

rcheck(hpe630x _setCaptureCollectinSRAM(sessionlD[ifp]. mezz. collect));

rcheck(hpe650x_setCaptureDataQutput(sessionlD[ifp]. mezz. output }):

rcheck(hpe650x_setMultiple [riggerAction(sessionID[itp]. mezz. VI_TRUL)):

rcheck(hpe630x _setCaptureTrigger(sessionID[ifp]. mezz. numberoftriggers)):

rcheck(hpe630x sctSuspendedCapture Task(sessionID[ifp]. mezz. suspend)):

rcheek(hpe630x setNumberOfSamplesToCapture(session]D[ifp]. mezz. sample)):

rcheck(hpe630x startCapture(sessionID[itp]. mezz)):

1
'

i* Synchronize all DDCs*/
rcheck(SynchronizeDDCs(SYSIEPS. sessionID. MEZZperlFP));
* Prearm -- required before arming. This stops any current activity */
for(ifp - 0:ifp = SYSIFPS: ifp+ 1)
for(mezz - 0; mezz < MEZZperlFP: mezzt)

rcheck(hpe650x_prearmDSPForDataCollection(sessionID[ifp]. mezz)):

/* Arm the master DSP. The master is defined as sessionID[0] in this example */

rcheck(hpe630x armDSPForDataCollection(sessionlD[0], MEZZ1. VI_FALSE));

E6501A/E6502A/E6503A VXI Receiver User’'s Guide 3-107

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

* Arm the slave DSPs */
it MEZZperlEFP - 1)
rcheck(hpe630x armDSPForDataCollection{ sessionID[0]. MEZZ2, VI_TRUL)):
i SYSIFPS = 1)
for(ifp = 15 ifp = SYSIFPS: ifp++)
for(mezz = 0 mezz < MEZZperlFP: mezz++)
rcheck(hpe650x_armDSPForDataCollection(sessionID[ifp]. mezz. VI TRUE)):

i* Prompt user for the trigger.*/
printf("Fire the triggers. Press Enter to continuein"):
getchar():
/* sleep while data is captured */
mSleep(1000):
* now stop the capture */
for(ifp - 0:ifp < SYSIFPS: ifp++)
for(mezz = 0; mezz <~ MEZZperlFP; mezzt +)
rcheck(hpe6350x stopCapture(sessionID[ifp}. mezz)):
* Close alt IFPs*/
for(ifp — 0:ifp < SYSIFPS: ifp+-)
rcheck(hpe650x close(sessionID] t{p])):

return VI _SUCCESS:

3-108 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

Scenario 9: Stream N Samples of 1/Q Data to the Link Port Using

a Trigger

Use the following programming example to stream a specified number of
digital I/Q data samples to the link port using a trigger to begin the streaming

process.

Figure 3-34 shows the main process steps for this scenario.

‘ Start Scenario 9 ’

A

Initialize Modules / Open Selact Monitoring Mode
VX Sessions

Synchronize Clocks for Setup Tuner and IF
Channels

|—>| Setup and Tune DDCs |-——>l Synchronize Autoranging Haugpigslj'g %g’:ﬁa; Get |—‘

PraArm and Arm ‘or
L Synchrol o5 H H
I Synchronize DDCs Trigger

{Insert Code to Get Data
IS . | ,I ¢ I
Send Trigger from Link Ports)

Ly?tore ¢ Display Data /Lbc Close VXI Sessions)

Figure 3-34 Scenario 9: Stream N Samples of I/Q Data to the Link Port Using a

Trigger

* Scenario 9:Stream n-samples of Digital 1Q data out the link port

using a trigger.

Notes:

1. The following files must exist in the same directory as the

source code.

"hpe650x.h”

“commonex.h”

"commornex.c”

"visatype.N"

"vpptype.h”

2. The file "hpe650x.1ib" must be available during linking.

3. The user should read through the code modifying the

following. as necessary:

a.

Constants that define the number of IF channels. IF
processors and mezzanines

Variables that define VXI addresses

SYNC AUTORANGE controls whether all TFP autoranging
15 synchronized.

TunerExists should be set to VI TRUE if a tuner exists
otherwise is should be set to VI_FALSE.

SYNC_CLOCKS is set to VI_ TRUE when coherent measurcments
across multiple mezzanines and/or multiple IFPs is desired.
“feenter” which defines the taner's center frequency
“ddefreq" sets the frequency tuning of the DDCs relative

to the IF.

"ddcbw" sets the bandwidth of the DDCs. See the user
documentation for a table of appropriate values.

"AnalogFilter”,

won

suspend”. "format”. "collect” and "output”

can be set to predefined constants as described below.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-109

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

4, The commands hpe650x init(). hpe630x_initIFChannci() and
hpe630x_setMonitoringMode() must be executed before other

commands, such as hpe650x_setTunerFrequency().

w

To synchronize DDCs across multiple mezzanines, the third

parameter of hpe650x_armDDCsForSynchronization in "commonex.c”
must be set to VI_TRUE. In addition. two trigger signals must

be sent from a external source to mezzanine 1.

6. IMPORTANT: In this example. the two trigger signals MUST be

sent when prompted. and BEFORE ANY SUBSEQUENT COMMANDS.

Disclaimer: This code is provided AS IS. It is a sample and unsupported.

*

#include <stdlib.hz

#include <stdio.hx

#define VISA

#include "hpe650x.h"

#include "commonex.h”

/% Number of IF channels */

#define IFCHNLS 1

/* Number of [F processors installed */

#define SYSIFPS 1

/* Number of mezzanines per [FP */

fidefine MEZZperIFP 2

/* Extend for IFPs.
This is an array for which each element contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre IFPvxilD[SYSIFPS] — | "VXI0:43::INSTR")

7* Extend for IFs.
There are arrays for which cach element contains a VXI address integer.
The first dimension spans the system IFPs. The second dimension spans
the IF channels for each IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. *

Vilnt32 1.0 log addr[SYSIFPS][IFCHNLS] {41};

Vilnt32 OneG log addr| SYSIFPS][IFCIINLS] - { 42}

Vilnt32 ThreeG_log addrf SYSIFPS][IFCHNLS] ~ { 40}

/* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI_TRUE") */

#define SYNC_AUTORANGL VI FALSE

* If the tuner exists. this constant should be set to VI TRUE*/

#define TunerExists VI_TRUE

/* Use this to switch on synchronized IFP clocks (VI TRUE). This MUST be
done if there is more than one mezzanine on an IFP, ¢ven if only one
mezzanine is used in the measurement. This is because of how the
trigger signal is propagated throughout multiple mezzanines.*/

#define SYNC CLOCKS VI TRUE

3-110 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

7% % R ok Rk OR Rl kR R R OK KR ok Rk ek s R ok o R o ook R KOR R R K K R R KR R K K kR kR R Rk ROk R ok

Don't change these, otherwise the code won't work anymore :-(

o s sk R oK KK s OK K o R 3 sk ok ok e R e ok R ok o R ok ok ok 0ROk ok sk R ki ok ok ok R R kR O RO R R R R K R Ok R Rk

fidefine IF1 0
#define 112 1
#define IFP1 0
#define MEZZ1 0
#define MEZZ2 1
#define DDCI O
#define DDC2 1
#define DDC3 2
#define DDC4 3
#define DDC5 4
#define IF30KHZ 0
#define IF700KHZ |
#define IFSMHZ. 2
#define RELATIVEQ
#defineABSOLUTE 1
#define DATANOTREADY -1
#define CAPTURENOTRUNNING 0
fddefine CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0
fidefine ADCDATA t
#define VXIBUS 0
#define PORT !
iidefine TRIGGER 1
#define FREERUN 0
#define SRAM 1
fidefine LINKPORTO
RO R R R AR R R K R R R KR KR R R R R KK
*
The macro 'rcheck’ saves the return status in the variable ret’.
If the return status indicates an error. ‘rcheck’ will call "ervor exit',
T'he 'rcheck’ macro requires variables ‘ret’ and 'instrumentID' be defined.
*/
#define reheck(A) (((result - A) —- VI_SUCCESS) 7°
(result) : (error_exit(sessionID[ifpl.result. LINE . FILE_)))
int main()
!
nt ifp. mezz. chan;
ViStatusresuit:
ViSessionsessionlD[SYSIFPS]:
Vilnt32 correction_ RAMpg. Gprofile, Gsubprofile. Gsystem:

Vilnt32 sample = 2000; * Number of samples or 0 if taking indefinite tength. */
ViReal64 finit — 20¢6: * This number should be less than T GHz.*/
ViReal64 feenter = 2000¢6: /* This number can be any valid frequency for the tuner.*/
Vilnt16 ddefreq = 02 * See user manual for “hpe630x_setDDCFrequency "/
Vilnt16 ddcbw - 8: /* See user manual for "hpe650x_setDigitalIFBandwidth"*/
Vilnt32 AnalogFilter — IF700KHZ: /* Other choices are IF30KHZ or IFSMHZ */
ViBoolean suspend - TRIGGER; /* Choices are FREERUN or TRIGGER */
ViBoolean format - DIGITALIQ; /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect LINKPORT: /* Choices are SRAM or LINKPORT */
ViBoolean output -~ PORT; /* Choices are VXIBUS or PORT */

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-111

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

* Configure the receiver state, inittalize all IFP's and 1F's */
for(ifp = 0: ifp < SYSIFPS:ifp- 1)

f
t

rcheck(hpe650x_init(IFPvxiID{ ifp]. VI_TRUE. VI_TRUE, &sessionID[ifp})):
for(chan = 0; chan <~ IFCHNLS; chan++)
/* Initialize the IF channels including establishing communication to their addresses. The initial frequency needs to be below | GHz.*

rcheck(hpe630x_initIFChannel(sessionID[ifp]. chan. TunerExists. finit. LO_log addr[ifp][chan]. OneG_log_addr[ifp][chan]. ThreeG_log _addr[
ifp]| chan])):
)
* Put all IFPs into monitoring mode */
for(ifp — 0 ifp <« SYSIFPS: ifp-+)
for(mezz -- 0: mezz < MEZZperlFP; mezz+-)
rcheck(hpe650x_setMonitoringMode(sessionlD{ ifp]. mezz)):
* Synchronize clocks between all mezzanines and IFPs. The IFP at sessionlD[0] is always the master in this example.*/
if{ VI TRUE --- SYNC_CLOCKS)
|

\

/* Instructs the master IFP to send its clock out VXI. Since the sample clock ts also the DSP clock. this action risks causing the DSPs to hang. Therefore
all the modulues are also reinitialized to reboot the DSPs.*/

rcheck(ConfigureMasterIFP(sessionlDJ 0])):
rcheck(hpe650x init(IFPvxiID[IF1]. VI_TRUE, VI_TRUE. &sessionID] IF1])):
for(chan = 0: chan <= IFCHNLS: chan++)

rcheck(hpe630x_initIFChannel(sessionID[IF 1], chan. TunerExists, finit, LO_log_addr[IF1]{ chan]. OneG log addr| IF1][chan].
ThreeG _log_addr[IF][chan])):

for(mezz = 0: mezz - MEZZperlFP: mezzt +)

rcheck(hpe650x _setMonitoringMode(sessionID] IF 1], mezz)):
/* Now configure all slave IFPs. The slaves are instructed to accept the master clock. Finally. the slaves must be reinitialized to boot the DSPs.*/
for(ifp — I: ifp < SYSIFPS: ifp-+)

|
A

reheck(ConfigureSlavell'P(sessionlD[ifp])):
rcheck(hpe630x init(IFPvxiID[ifp]. VI TRUE. VI_TRUE. &sessionID[ifp])):
for(chan — 0: chan < IFCHNLS; chan++)

rcheck(hpe630x_initIFChannel(sessionID] ifp]. chan, Tunerkxists. finit. LO_log addr[ifp]{ chan]. OneG log addr| ifp][chan].
ThreeG log addr| ifp]] chan])):

for(mezz = 0: mezz < MEZZperlFP: mezz—+)
rcheck(hpe650x_setMonitoringMode(sessionID[ifp]. mezz)):
}
/* Set up and tunc the 1Fs */
for(ifp = 0. ifp = SYSIFPS: ifp: 1)
for(chan ~ 0: chan < IFCHNLS; chan~+)

I
1

* Set the tuner frequency to the value of "fcenter”*/

rcheck(hpe650x_setTunerFrequency(sessionID| ifp]. chan. fcenter)):

* Set the analog filter to either 30 kHz, 700 kHz or 8 MHz using "AnalogFilter"*/
rcheck(hpe650xsetAnalogFilter(sessionID]ifp], chan. AnalogFilter)):

/* Activate autorange once after the initialization of each mezzanine */

rcheck(hpe630x _activateAutoranging(sessionID[ifp]. chan))

/* Set up and tune DDCs */
for{ ifp — O ifp = SYSIFPS. ifpt +)
for(mezz — 0; mezz < MEZZperIFP: mezzt +)
!
/* The following function can be used for each DDC installed */
rcheck(hpe650x _setDDCFrequency(sessionID[ifp]. mezz. DDCI1, RELATIVE. ddcfreq)):

rcheck(hpe650x_setDDCFrequency(sessionID[ifp]. mezz. DDCS5, RELATIVE, ddcfreq));

3-112 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

/* rcheck(hpe630x_setDDCFrequency(sessionID[itp). mezz. DDC2. RELATIVE, ddefreq));
rcheck{ hpe630x_setDDCFrequency(sessionID[ifp). mezz. DIDC3. RELATIVE., ddcfreq)):
rcheck{ hpe650x setDDCFrequency(sessionID[ifp]. mezz. DDC4, RELATIVE. ddcfreq)):*/
/* only need to call this function once per mezzanine */
rcheck(hpe650xsetDigitalIFBandwidth(sessionID{ifp]. mezz. ddebw)):

V

i

/* synchronize autoranging on all modules in system */

ift VI TRUE —= SYNC_AUTORANGE)

1
\

/* sync autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionID} TFP1]. IF1. &corvection_ RAMpy. &Gprofile, &Gsubprofile, &(system)):
/* synch autoranging on the slave channels */
if(IFCHNLS = 1)
rcheck(ConfigureSlaveChannel(sessionID[IFPL]. IF2. correction_ RAMpg. Gprofile. Gsubprofile, Gsystem));
for(ifp ~ 17 ifp < SYSIFPS: ifp++)
for(chan = 0: chan -~ IFCHNLS; chan+-)

rcheck(ConfigureSlaveChannel(sessionID[ifp). chan, correction_ RAMpg. Gprofile. Gsubprofile, Gsystem)):

/* Set up to do the actual data capture */
for(ifp = 0z ifp = SYSIFPS: ifp++)
for(mezz = 0: mezz <= MEZZperlFP: mezz-+)

reheck(hpe630x_setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDCI, VI_TRUE)):

rcheck(hpe630x setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDCS. VI TRUE)):
* rcheck(hpe630x setCaptureDataDDCNum(sessionlD[ifp]. mezz. DDC2. VI TRUE)):

rcheck(hpe630x_ setCaptureDataDDCNum(sessionlD[ifp]. mezz, DDC3. VI_TRUE)):

rcheek(hpe630x setCaptureDataDDCNum(sessionID[ifp]. mezz, DDC4. VI_TRUE)):*/

mSleep(50): /* allow for DDC transients */

rcheck(hpe630x setCaptureDataFormat(sessionID|[ifp]. mezz. format)):

rcheck(hpe630x setCaptureCollectinSRAM(sessionID[ifp]. mezz. collect)):

rcheck(hpe630x setCaptureDataOutput(sessionID[ifp]. mezz. output)):

rcheck(hpe630x setSuspendedCaptureTask(sessionID[ifp]. mezz. suspend)):

rcheck(hpe650x sctNumberOtSamplesToCapture(sessiontD[itp]. mezz. sample)):

rcheck(hpe630x_startCapture(sessionID[ifp). mezz)):

1
5

/% Synchronize all DDCs*/
rcheck{ SynchronizeDDCs(SYSIFPS, sessionlDd, MEZZperlFP)):
* Prearm -- required before arming. This stops any current activity */

for(ifp - 0:ifp -~ SYSIFPS: ifp+t)
for{ mezz - (: mezz -~ MEZZperlFPLinezzt+)
rcheck(hpe650x prearmDSPForDataCollection(sessionID[ifp]. mezz)):
/* Arm the master DSP. The master is defined as sessionID[0] in this example.*/
rcheck(hpe6350x _armDSPForDataCollection(sessionlD[0], MEZZ1. VI_FALSE)):
/* Arm the slave DSPs */
if(MEZZperIFP > 1)
rcheck(hpe630x armDSPForDataCollection(sessionID[0]. MEZZ2. VI_TRUL)):
If(SYSIFPS = 1)
for(ifp - 1:ifp < SYSIFPS; ifpt++)
for(mezz — 0; mezz = MEZZperlFP; mezzi t)

rcheck(hpe650x_armDSPForDataCollection(sessionID]ifp]. mezz, VI TRUE)):

/* Prompt user for the trigger.*/
printf("Fire the trigger. Press Enter to continuen”):

getchar():

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-113

/* sleep while data is captured */
mSleep(1000):
* Close all IFPs*/

for(ifp — 0: ifp = SYSIFPS; ifp1)

rcheck(hpe650x close(sessionID| ifp])

return VI SUCCESS:

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

)

3-114 E6501A/E6502A/E6503A VXI Receiver User's Guide

‘ Start Scenario 10)

y

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

Scenario 10: Stream ADC Data Indefinitely to the Link Port

Use the following programming example to stream an indefinite number of
ADC (full rate) data samples to the link port.

Figure 3-35 shows the main process steps for this scenario.

Initiafize Modules / Open
VX1 Sessians

>

Select Monitoring Mode

>

Synchronize Clocks for
Triggering

Setup Tuner and iF

Channels

L,

Synchronize Autoranging

>

Setup Capture Mode, Get
Ready to Capture

PreArm and Arm for
Trigger

L.

Send Trigger

>

{insert Code to Get Data
from Link Ports)

—>

Stop Capture

H

L}/ Store / Display Data P(Close VXI Sessions)

Figure 3-35 Scenario 10: Stream ADC Data Indefinitely to the Link Port

/* Scenario 10:Stream ADC data indefinitely to the Link Port

with a trigger.

Notes:

1.

source code

"hpe630x.h"

"commonex
"commonex
"visatype.h”

"vpptype.h”

"

s

[he following files must exist in the same directory as the

. The file "hpe650x.1ib" must be available during linking.

following. as necessary:

The user should read through the code modifying the

a. Constants that define the number of IF channels. IF

processors and mezzanines

b. Variables that define VXI addresses

c. SYNC AUTORANGE controls whether all [FP autoranging

is synchronized.

d. TunerExists should be set to VI TRUE if a tuner exists

otherwise is should be set to VI_FALSE.
e. SYNC CLOCKS is sct to VI TRUE when coherent measurements

across multiple mezzanines and/or multiple IFPs is desired.

f. “fecenter” which defines the tuner's center frequency

e

"AnalogFilter". "suspend". "format",

can be set to predefined constants as described below.

collect” and "output"

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-115

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

4. The commands hpe650x_init(), hpe650x_initIFChannel() and
hpe650x _setMonitoringMode() must be executed before other

commands, such as hpe650x_setTunerFrequency().

Disclaimer: This code is provided AS IS. Itis a sample and unsupported.

*

innclude <stdlib b

sinclude <stdio.h:

#define VISA

#include "hpe650x.h"

#inctude "commonex.h"

/* Number of IF channels */

#define IFCHNLS 1

/* Number of IF processors installed */

#define SYSIFPS 1

/* Number of mezzanines per IFP */

#define MEZZperIFP - 2

/* Extend for 1FPs.
This is an array for which cach ¢lement contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre [FPvxilD] SYSIFPS] = { "VX10::143::INSTR"}:

* Extend for IFs.
There are arrays for which cach element contains a VX1 address integer.
The first dimension spans the system IFPs. The second dimension spans
the IF channels for each IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. */

Vilnt32 LO log addr] SYSIFPS][IFCHNLS] = | 41}:

Vilnt32 OneG log addr] SYSIFPS|} IFCHNLS] {42}

Vilnt32 ThreeG log addr| SYSIFPS|| IFCHNLS] - { 40}:

/* Use this to switch on sychronized autorange (Change “VI_FALSE" to "VI TRUE") *;

#define SYNC AUTORANGE VI _FALSE

* If the tuner exists, this constant should be set to VI TRUE*

#define TunerExists VI_TRUE

#* Use this to switch on synchronized IFP clocks (VI TRUE). This MUST be
done if there is more than one mezzanine on an IFP. even if only one
mezzanine is used in the measurement. This ts because of how the
trigger signal is propagated throughout multiple mezzanines.*/

#define SYNC _CLOCKS VI TRUE

JRERAR AR RR AR R R R R R OR RKKKKKKKR R R R R R R

Don't change these, otherwise the code won't work anymore :-(

H AR R R R R R R R R AR R SRR AR RO KRR R OR R R R R R R R AR R A

#define IF1 0

#define IF2 1

fdefine IFP1 0

#define MEZZI 0

‘ #define MEZZ2 1

fidefine DDC1 0O

#define DDC2 1

#define DDC3 2

#define DDC4 3

#define DDC5 4

#define IF30KHZ 0

#define IF700KHZ 1

3-116 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

#define [FSMHZ. 2
#define RELATIVEO
#defineABSOLUTE l
#define DATANOTREADY -1
#detine CAPTURENOTRUNNING 0
#define CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0
#define ADCDATA |
ddefine VXIBUS 0
#define PORT 1
#define TRIGGER 1
#define FREERUN 0
f#define SRAM 1
#define LINKPORTO
kR R R R HOR R ORI R R R K K KK K RO ok o
/%
The macro 'rcheck’ saves the return status in the variable ret'.
If the return status indicates an error, ‘rcheck’ will call ‘error_exit'.
The 'rcheck’ macro requires variables ‘ret’ and ‘instrumentID' be defined.
*y
#define rcheck(A) (((result = Ay == VI_SUCCESS) 7
(result) : (error exit{sessionID[ifplresult. LINE_ . FILE })))
int main()

'
1

int ifp. mezz. chan:
ViStatusresult:
ViSessionsessionID| SYSIFPS|:

Vilnt32 correction RAMpg. Gprofile. Gsubprofile. Gsystem:
Vilnt32 sample - 0: /* Number of samples or 0 if taking indefinite length. */
ViReal64 finit - 20¢6: * This number should be less than | GHz.*/
ViReal64 feenter -+ 2600c6: 7+ This number can be any valid frequency for the tuner.*/
Vilnt32 AnalogFilter - IFT00K1Z: /* Other choices are IF30KHZ or IFSMHZ */
ViBoolean suspend = TRIGGER; /* Choices are FREERUN or TRIGGER */
ViBoolean format — ADCDATA: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect = LINKPORT: /* Choices are SRAM or LINKPORT *
ViBoolean output = PORT: /* Choices are VXIBUS or PORT */
/* Configure the receiver state. initialize all IFP's and IF's */
for(ifp - 02 ifp = SYSIFPS: ifpt+)
!

rcheck(hpe630x_init{ IFPvxiID[ifp]. VI_TRUE. VI TRUE. &sessionID[ifp])):

for(chan — 0; chan = IFCHNLS: chan+-)

* Initialize the IF channels including establishing communication to their addresses. The initial

rcheck(hpe650x initlFChannel(sessionlD itp]. chan. TunerExists. finit. LO_log _addr] ifp}| chan].

ifp][chan|)).

1
i

#* Put alt IFPs into monitoring mode */

frequency needs to be below 1 GHz.*/

OneG log addr ifp]| chan]. ThreeG log_addr|

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-117

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

for(ifp — Oz ifp = SYSIFPS: ifpi+t)
for(mezz - 0: mezz - MEZZpertEP: mezzt+)
rcheck(hpe630x setMonitoringMode(sessionID[ifp]. mezz)):
i* Svnchronize clocks between all mezzanines and 1FPs. The IFP at sessionlD{ 0} is always the master in this example */
if(VI TRUE == SYNC CLOCKS)

!
1

/* Instructs the master IFP to send its clock out VXI. Since the sample clock is also the DSP clock. this action riskscausing the DSPs to hang. Theretore

all the modulues are also reinitialized to reboot the DSPs.*/
rcheck(ConfigureMasterIFP(sessionID| 01)):
rcheck(hpe630x_init(IFPvxiID[IFT]. VI_TRUE. VI_ TRUE. &sessionID[1F1])):
for(chan - 0: chan < IFCHNLS: chant +)

rcheck(hpe650x_initIFChannel(sessionlD] IF1], chan, TunerExists, fimit. LO_log_addr[IF1][chan], OneG_log _addrf IF1][chan].
ThreeG _log_addr[IF1]{ chan])):

for(mezz = 0: mezz - MEZZperlFP: mezz ++)

rcheek(hpe650x_setMonitoringMode(sessionlDf 1F1]. mezz)):
/* Now configure all slave IFPs. The slaves are instructed to accept the master clock. Finally. the staves must be reinitialized to boot the DSPs.*/
for(ifp - 1: ifp < SYSIFPS; ifp++)

§
t

rcheck(ConfigureSlavelFP(sessionID[ifp])):
rcheck(hpe650x_init(IFPvxiID[ifp]. VI TRUE. VI TRUE. &sessionID{ ifp])):
for(chan — 0: chan - [FCHNLS; chan't -)

reheck(hpe630x initIFChannel(sessionIDf ifp]. chan. TunerExists. finit. LO_log_addr[ifp}[chan]. OneG_log_addr[ifp][chan].
ThreeG tog addrf ifp]] chan])):

for(mezz = 02 mezz < MEZZperlFP: mezz+-)
reheek(hpe630x setMonitoringMode(sesstonlD[ifp]. mezz)):

'
3

/* Set up and tune the [Fs */
for(ifp - O itp = SYSIFPS: ifp: t)
for(chan - 0; chan = IFCHNLS: chant~)

s
?

* Set the tuner frequency to the value of "feenter”*/

reheek(hpe630x setTunerFrequency(sessionID[tp]. chan. feenter)):

* Set the analog filter to either 30 kHz. 700 kllz or 8 MHz using "AunalogFilter*/
rcheck(hpe650x_setAnalogFilter(sessionlD[itp]. chan, AnalogFilter)):

/* Activate autorange once after the initialization of cach mezzanine.*/

rcheck(hpe630x_ activateAutoranging(sessionID[ifp}. chan)):

1
|

/* synchronize autoranging on all modules in system */
if(VI_TRUE ~~ SYNC_AUTORANGL)

§
i

/* sync autoranging on master channel */
rcheck(ContigureMasterChannel(sessionlD[IFP1]. IFT. &correction RAMpg. &Gprofite. & Gsubprofile. &Gsystem)):
/* synch autoranging on the slave channels */
if(IFCHNLS = 1)
reheck(ConfigureStaveChannel(sessionID[IFP1]. IF2. correction. RAMpg. Gprofile. Gsubprofile. Gsystem)):
for(ifp - I:itp + SYSIFPS: ifp++)
for(chan = 0: chan < IFCHNLS: chan++)

rcheck(ConfigureSlaveChannel(sessionID| 1fp]. chan. correction RAMpg. Gprofile. Gsubprofile. Gsystem)):

* Set up to do the actual data capture */
for(ifp == 0: ifp = SYSIFPS: ifp~++)
for(mezz - 0: mezz <~ MEZZperlFP: mezz++)

/
1

rcheck(hpe630x_setCaptureDataFormat(sessionID]ifp]. mezz. format)):

3-118 E6501A/E6502A/E6503A VX! Receiver User’s Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

rcheck(hpe630x setCaptureCollectInSRAM(sessionlD[ifp]. mezz, collect)):
rcheck(hpe6350x sctCaptureDataQutput(sessionlD[ifp], mezz, output));

rcheck(hpe650x setSuspendedCapture Task(sessionID[ifp], mezz. suspend)):
rcheck(hpe6350x_setNumberOfSamplesToCapture(sessionlD{ifp]. mezz. sample));
rcheck(hpe630x_startCapture(sessionIDfifp]. mezz)):

1
s

/* Prearm -- required before arming. This stops any current activity */
for(ifp -+ 0; ifp = SYSIFPS: ifp++)
for(mezz = 0; mezz < MEZZperlFP; mezz++)

rcheck(hpe630x prearmDSPForDataCollection(sessionlD[ifp]. mezz)):

/* Arm the master DSP. The master is defined as sessionID[0] in this example.*/

rcheek(hpe630x _armDSPForDataCollection(sessionlD[0]. MEZZ1. VI FALSE)):

/* Arm the slave DSPs */
ifl MEZZperlFP = 1)
rcheck(hpe6350x armDSPForDataCollection(sessionID[0]. MEZZ2. VI_TRUE)):
ift SYSIFPS = 1)
for(ifp — 1. ifp < SYSIFPS: ifp++)
for(mezz -- 0; mezz < MEZZperlFP: mezz++)

rcheck(hpe650x _armDSPForDataCollection(sessionID[ifp]. mezz, VI_TRUL)):

* Prompt user for the trigger.*/
printf("Fire the trigger. Press Enter to continuein”):
getchar():
/* sleep while data is captured */
mSleep(1000):
* now stop the capture */
for(ifp =0, ifp < SYSIFPS: ifpi +)

for{ mezz - 0: mezz < MEZZperlFP; mezz: t)

rcheck(hpe6350x_stopCapture(sessionlD] ifp], mezz }):

7* Close all IFPs*/ : ,
for(ifp — O ifp < SYSIFPS: ifp~+)

rcheck(hpe630x_close(sessionID] ifp])):

return VI_SUCCESS:

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-119

‘ Start Scenario 11 ’

Y

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 11: Stream N Samples of ADC Data to the Link Port

Use the following programming example to stream a specified number of
ADC (full rate) data samples to the link port without the use of a trigger to
begin the streaming process.

Figure 3-36 shows the main process steps for this scenario.

Initialize Modules / Open
VX1 Sessions

>

Setup Tuner and IF

Select Monitoring Mode f—3 Channels

L—»{ Synchronize Autoranging -—-’

L Setup Capture Mode. (Insert Code to Get Data T
Start Capture > from Link Ports) ——y Store / Display Data F'

L.

Hard System Reset >—>C Close VX| Sessions)

seentt

Figure 3-36 Scenario 11: Stream N Samples of ADC Data to the Link Port

/* Scenario 11: Stream n-samples of ADC data to the Link Port

with no trigger.

Notes:

1. The following files must exist in the same directory as the

SOUree C()(iL‘.
"hpe630x.h"
"commonex.h"”
“commonex.c”
"visatype.h"

"vpptype.h”

2. The file "hpe6S0x.1ib" must be available during linking.

following. as necessary:

3. The user should read through the code modifying the

a. Constants that define the number of IF channels, IF

processors and mezzanines

b. Variables that define VXI addresses
[SYNC_AUTORANGE controls whether all IFP autoranging

18 synchronized.

d. TunerExists should be set to VI_TRUE if a tuner exists

otherwise 15 should be set to VI FALSE.

e. "feenter” which defines the tuner's center frequency

f. "AnalogFilter”. "suspend”. "format”, “collect” and “output”

can be set to predefined constants as described below.

4. The commands hpe6350x _init(). hpe630x_initIFChannel() and

hpe650x _setMonitoringMode() must be executed before other

comnands. such as hpe650x setTunerFrequencey().

Disclaimer: This code is provided AS IS. Itis a sample and unsupported.

3-120 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

*/

#include <stdlib.hz

#include =<stdio.h=

#define VISA

#include "hpe650x.h"

#include "commonex.h”

/* Number of IF channels */

#define [FCHNLS 1

/* Number of IF processors installed */

#define SYSIFPS |

/* Number of mezzanines per IFP */

#define MEZZperIFP 2

/* Extend for IFPs.
This is an array for which each element contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre [FPvxiID[SYSIFPS] - { "VXI0::43::INSTR"}:

/* Extend for IFs.
There are arrays for which each element contains a VXTI address integer.
The first dimension spans the system [FPs. The second dimension spans
the IF channels for each IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. */

Vilnt32 LO log addr] SYSIFPS][IFCHNLS] — [41}:

Vilnt32 OneG log addr| SYSIFPS|[IFCHNLS] - { 42}:

Vilnt32 ThreeG log_addr] SYSIFPS][IFCHNLS] = { 40}:

/* Use this to switch on sychronized autorange (Change "VI FALSE" to "VI TRUE") */

idefine SYNC AUTORANGE VI FALSE

* 1f the tuner exists. this constant should be set to VI_TRUE*/

#define Tunerlixists VI TRUE

SRR R SRR R KRR AR KRR R R R R R A R kR KR

Don't change these. otherwise the code won't work anymore :-(

AR R R R R R R K K R KR ARk R R RS o KR

Zdefine IF1 0

#define IF2 1

#define IFP1 0

#define MEZZLE 0

#define MEZZ2 |

#define DDCI1 0

#define DDC2 |

#define DDC3 2

#define DDC4 3

#define DDC5 4

#define IF30KIIZ 0

#define 1F700KHZ |

fdefine IFSMHZ 2

fidefine RELLATIVEO

#defineABSOLUTL 1

#define DATANOTREADY -1

#define CAPTURENOTRUNNING 0

#define CAPTUREDATANOTREADY 2

#define CAPTUREDATAREADY 3

#idefine DIGITALIQ 0
#define ADCDATA 1
#define VXIBUS 0
#define PORT |

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-121

#define TRIGGER |
#define FREERUN 0
#define SRAM |

#define LINKPORTO

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

JR R OR R ok OK R R ok R SOR S OR sk R H OR OR SOR KR OR SRRSO R R R R R R R R kR kR

*

The macro 'rcheek’ saves the return status in the vartable ret’.

If the return status indicates an ervor, 'rcheck’ will call 'error_exit’.

The 'reheck’ macro requires variables ret and 'instrumentID' be defined.

*/
fidefine rcheck(A) (({result = A} - = VI_SUCCESS) 2
(result) : (error_exit(sessionID[ifp].result, LINE .
int main()
]
int ifp, mezz. chan;

ViStatusresult;

ViSessionsessionlD[SYSIFPS]:

FILE)

Vilnt32 correction RAMpg. Gprofile, Gsubprofile. Gsystem:

Vilnt32 sample = 2000

ViReal64 finit = 20¢6;

ViRcal64 feenter = 2600c6:

Vilnt32 AnalogFilter — IF700KI1Z;
ViBoolean suspend = FREERUN;

ViBoolean format .- ADCDATA:

ViBoolean coltect = LINKPORT:

ViBoolean output = PORT:

/* Configure the receiver state, initialize all [FP's
for(itp — Oz ifp - SYSIFPS: ifp-+)

|
l

rcheek(hpe650x_init(IFPvxilD[itp]. VI~

for(chan - 0: chan -2 IFCHNLS: chan—+)

* Initialize the IF channels including establishing communication to their addresses. The initial

rcheck(hpe650x_initlFChannel(ses
ifp][chan])):

]
+

/* Put all IFPs into monitoring mode */

for(ifp - 0; ifp - SYSIFPS: ifp+ t)

* Number of samples or 0 if taking indefinite length. */
* This number should be less than 1 GHz.*/
/* This number can be any valid frequency for the tuner.*/
/¥ Other choices are IF30KHZ or IFSMHZ */
/* Choices are FREERUN or TRIGGER */
/* Choices are DIGITALIQ or ADCDATA */
/* Choices are SRAM or LINKPORT */
/* Choices are VXIBUS or PORT */

and IF's */

IRUE. VI TRUE. &scssionID] ifp])):

sionID[itp]. chan. TunerExists. finit. LO_log_addr| ifp][chan]. OneG _log addr[ifp]| chan]. ThreeG log addr|

for(mezz -- 0. mezz - MEZZperlFP; mezzt +)

rcheck(hpe650x setMonitoringMode(sessionIDf ifp]. mezz)):

/% Set up and tune the IFs */

for(ifp - 01 ifp ~ SYSIFPS:ifp++)
for(chan - 0: chan - IFCHNLS: chan++)
i

/* Set the tuner frequency to the

value of "fcenter"*/

rcheck(hpe630x_ setTunerlrequency(sessionID[ifp]. chan. fcenter));

* Set the analog filter to cither 30 kHz, 700 kHz or 8 MHz using "AnalogFilter"*/

rcheek(hpe630x setAnalogFilter(sessionID[ifp]. chan, AnalogFilter)):

* Activate autorange once after

the initialization of cach mezzanine */

rcheck(hpe6350x_activateAutoranging(sessionID[ifp]. chan)):

3-122 E6501A/E6502A/E6503A VXI Receiver User's Guide

frequency needs to be below | GHz.*/

* synchronize autoranging on all modules in system */

ift VI TRUE —— SYNC_AUTORANGE)

§
A

/* sync autoranging on master channel */

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

rcheck(ConfigureMasterChannel(sessionID] IFP1]. IF1, &correction RAMpg. &Gprofile. &Gsubprofile, & Gsystem)):

/* synch autoranging on the slave channels */

H(IFCHNLS = 1)

for(ifp == 1. ifp < SYSIFPS:itp++)

1
s

/* Set up to do the actual data capture */
for(ifp = 0: ifp < SYSIFPS: ifp~+)

for(mezz — 0 mezz < MEZZperlFP; mezz—+)

i
t

]
i

/% Prompt user to continue*/

rcheck(ConfigureSlaveChannel(sessionID[1FP1], IF2, correction RAMpg, Gprofile. Gsubprofile, Gsystem));

for(chan — 0: chan = IFCHNLS: chan++)

rcheck(ConfigureSlaveChannel(sessionID[ifp|. chan. correction_RAMpg. Gprofile, Gsubprofile, Gsystem)):

rcheck(hpe650x
rcheck(hpe650x
rcheck(hpe650x
rcheck(hpe650x
rcheck(hpe6350x

rcheek(hpe6350x

startCapture(sessionID[ifp}. mezz)):

sctCaptureDataFormat(sessionID[ifp]. mezz. format)):
setCaptureCollectinSRAMY(sessionID{ifp]. mezz. collect));
setCaptureDataOutput(sessionID[ifp]. mezz. output)):
setSuspendedCapture Task(sessionlD[ifp]. mezz. suspend)):

setNumberOfSamplesToCapture(sessionlD[ifp]. mezz. sample }):

printf("N Samples streamed from Link Port. Press Enter to continue.'n"):

getchar():

/* Reset [FPs*/

for(ifp — 0:ifp -~ SYSIFPS: ifp: +)

hpe650x hardSystemReset(sessionlDfifp]):

/* Close all IFPs*/

for(itp

rcheck(hpe650x close(sessionID] ifp])):

02 ifp < SYSIFPS:ifp-+)

return VI SUCCESS:

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-123

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 12: Stream N Samples of ADC Data to the Link Port
Using a Single Trigger

Use the following programming example to stream a specified number of
ADC (full rate) data samples to the link port using a single trigger to begin
the streaming process.

Figure 3-37 shows the main process steps for this scenario.

‘ Start Scenario 12 ’

A

Initialize Modules / Open »| Select Manitoring Mode Synchronize Clocks far Setup Tuner and IF
VX} Sessions e Horing Triggering Channels

Setup Capture Mode, Get PreArm and Arm for

L} Synchronize Autoranging —3» Ready 1o Capture Trigger

{insert Code {0 Get Data
from Link Ports)

—>/ Stere / Display Data H Close VX! Sessions))

Figure 3-37 Scenario 12: Stream N Samples of ADC Data to the Link Port Using a
Single Trigger

1 Send Trigger | 31 Stop Capture T

* Sceenario 12: Stream n-samples of ADC data to the link port

using a single trigger.

Notes:

1. The following files must exist in the same directory as the

source code.
“hpe630x.h"
"commonex.h”
"commonex.c”
"visatype.h”

"vpptype.h"

2. The file "hpe630x.1ib” must be available during linking.

3.

The user should read through the code modifying the

following. as necessary:

a. Constants that define the number of IF channels. IF
processors and mezzanines

b. Variables that define VXT addresses

[SYNC AUTORANGE controls whether all IFP autoranging
is synchronized.

d. Tunerkxists should be set to VI TRUE if a tuner exists
otherwise is should be set to VI_FALSE.

e SYNC CLOCKS is set to VI_TRUE when coherent measurcments
across multiple mezzanines and/or multiple IFPs is desired.

f. "feenter” which defines the tuner's center frequency

i3 "AnalogFilter”. "suspend". "format". "collect” and "output"”

can be set to predefined constants as described below.

3-124 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

4, The commands hpe630x init(). hpe630x_initlFChannel() and
hpe630x setMonitoringMode() must be executed before other

commands, such as hpe6350x_setTunerFrequency().

Disclaimer: This code is provided AS IS. It is a sample and unsupported.

Y

finclude <stdlib.hx

ginclude <stdio.h>-

#define VISA

#include "hpe650x.h"

#inchude "commonex.h"

/* Number of IF channels */

fdefine ITFCHNLS t

/* Number of IF processors installed */

#define SYSIFPS 1

/* Number of mezzanines per [FP */

#define MEZZperlFP 2

/* Extend for IFPs.
This is an array for which each element contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre [FPvxilD] SYSIFPS] = § "VXI0::43::INSTR"}:

/* Extend for IFs.
There are arrays for which cach clement contains a VXTI address inteyer.
The first dimension spans the system IFPs. The second dimension spans
the IF channels for each IF processor. This example shows the VX1
module addresses for one 3 GHz tuner. */

Vilnt32 LO log addr[SYSIFPS]{ IFCHNLS] ~ { 41}

Vilnt32 OneG log addr{ SYSIFPS][IFCHNLS] = { 42}:

Vilnt32 ThreeG tog addi[SYSIFPS]| IFCHNLS] = { 40} -

/* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI_TRUE") */

#detine SYNC_AUTORANGE VI FALSE

/* If the tuner exists. this constant should be set to VI_TRUE*/

#define TunerExists VI TRUE

/* Use this to switch on synchronized IFP clocks (VI TRUE). This MUST be
done if there is more than one mezzanine on an [FP. even if only one
mezzanine is used in the measurement. This is because of how the
trigger signal is propagated throughout multiple mezzanines.*/

#define SYNC CLOCKS VI TRUE

e o ok e ok ok s sk Rl ok okl sk Aok ok ok K ok ok sk ok S s o R o ok ok ok ok ok sk ok ok KR K 3R KK ROR KoK KR ok R Rk o ok

Don't change these. otherwise the code won't work anymore :-(

S sk ok s sk ok ok ok ok ok R e ofOR s ok kot R R KRR SR Sk 3 ok o ok ok R sk sk ok s R R ok ok ok R R R R K K KO K KRRk KR R K

#define IF1 0
#define [F2 1
#define IFP1 0
#define MEZZ1 0
#define MEZZ2 1
#define DDC1 O
#detine DDC2 1
#detine DDC3 2
#define DIXC4 3
#define DDCS 4
f#define [F30KHZ 0

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-125

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

#define IF700KH7Z, |
#define IFSMHZ 2
#define RELATIVEO
#defineABSOLUTE 1
#define DATANOTREADY -1
Zdefine CAPTURENOTRUNNING 0
#define CAPTUREDATANOTREADY 2
fidefine CAPTUREDATAREADY 3
#detine DIGITALIQ 0
#define ADCDATA]
#define VXIBUS 0
#define PORT I
#define TRIGGER |
#define FREERUN 0
#define SRAM 1
#define LINKPORTO
J L L e LIS LT LTy
7
The macro 'rcheck’ saves the return status in the variable 'ret'.
If the return status indicates an error. rcheck’ will call ‘error_exit'.
The 'rcheck’ macro requires variables 'ret’ and 'instrumentID’ be defined.
*/
fidefine rcheck(A) (((result - A) —= VI_SUCCESS) 7%
(result) : (error exit(sessionID]ifp]oesult, LINE . FILE_)))
int main()

1
|

int ifp, mezz, chan:
ViStatusresult:

ViSessionsessionlD[SYSIFPS]:

Vilnt32 correction_RAMpg. Gprofile, Gsubprofile, Gsystem:

Vilnt32 sample -~ 2000 i* Number of samples or 0 if taking mdefinite length. *
ViReal64 finit - 20e6: * This number should be Tess than | GHz.*
ViReal64 fecenter - 2600e6; /* I'his number can be any valid frequency for the tuner */
Vilnt32 AnalogFilter ~ [F700KHZ: /* Other choices are IF30KHZ or [IFSMHZ */
ViBoolean suspend - TRIGGER: /* Choices are FREERUN or TRIGGER *
ViBoolean format — ADCDATA: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect == LINKPORT: /* Choices are SRAM or LINKPORT */
ViBoolean output = PORT: /* Choices are VXIBUS or PORT */

/* Configure the receiver state. initialize alt [FP's and II's */

for(ifp = 0: ifp -~ SYSIFPS: ifp+-)

'
1

rcheek(hpe630x init(IFPvxiID[ifp], VI TRUE. VI_TRUE, &sessionlD[ifp])):
for(chan - 0: chan = IFCHNLS: chan +)

ifp}f chan))):

]
i

;
/*

Initialize the IF channels including establishing communication to their addresses. The initial

reheck(hpe630x_initlFChannel(sessionID[ifp]. chan, TunerExists. finit. LO_log_addr[ifp][chani.

frequency needs to be below 1 GHz.*/

OneG log addrf ifp][chan]. ThreeG_tog_addr|

3-126 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

/* Put all IFPs into monitoring mode */
for(ifp — 0. ifp < SYSIFPS:ifprt)
for(mezz = 0: mezz < MEZZperlFP: mezzt+)

rcheck(hpe650x_setMonitoringMode(sessionlD] ifp]. mezz)):

/* Svnchronize clocks between all mezzanines and 1FPs. The IFP at sessionID[0] is always the master in this example.*/

ift VI TRUE == SYNC_CLOCKS)

i
t

/* Instructs the master 1FP to send its clock out VXI. Since the sample clock is also the DSP clock. this action risks causing the DSPs to hang. Therefore

all the modulues are also retnitialized to reboot the DSPs.*/
rcheck(ConfigureMasterIFP(sessionlD[0])):
rcheck(hpe630x_init(IFPvxilD[IF1]. VI_TRUE. VI_TRUE, &sesstonID[IF1]});
for(chan -~ 0: chan - [FCHNLS: chan—+)
rcheck(hpe650x initlFChannel(sessionID[II1]. chan. TunerExists. finit, LO_log_addr[IF1][chan].
ThreeG_log_addr[1F1]f chan])):
for(mezz = 0: mezz < MEZZperlFP: mezz: 1)
rcheck(hpe630x_setMonitoringMode(sessionlD[1F1]. mezz)):
/* Now confipure all slave IFPs. The slaves are instructed to accept the master clock. Finally, the slaves
for(ifp = 1. ifp = SYSIFPS: ifp- +)

1
l

rcheck(ConfigureSlavelFP(sessionlD[ifp])):
rcheck(hpe650x init(IFPvxiID{ ifp]. VI_TRUE, VI TRUE. &sessionlD][ifp])):
for(chan = O: chan < IFCHNLS: chan+-)

rcheck(hpe630x_initlFChannel(sessionID{ ifp], chan. TunerExists. finit. 1O log_addr itp]{ chan].

ThreeG log addrf ifp]] chan])):
for(mezz = 0; mezz < MEZZperlFP: mezz++)

rcheck(hpe6350x sctMonitoringMode(sessioniD[ifp]. mezz)):

/* Set up and tune the [Fs */
for(ifp = 0: ifp < SYSIFPS: ifpi i)
for(chan - 0: chan = IFCHNLS: chan - +)

1
i

* Set the tuner frequency to the value of "feenter™*/

reheck(hpe630x setTunerFrequency(sessionID[ifp]. chan. feenter)):
/* Set the analog filter to either 30 kilz, 700 kHz or 8 MHz using "AnalogFilter”*;
rcheck(hpe650x setAnalogFilter(sessionID[ifp]. chan. AnalogFilter)):

* Activate autorange once after the initialization of each mezzanine.*/

rcheck(hpe630x activateAutoranging(sessionID|ifp]. chan)):

\
]

/* synchronize autoranging on all modules in system */
ift VI TRUL =+ SYNC_AUTORANGE)

!
0

/* sync autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionID[IFP1]. IF}, &correction. RAMpg. &Gprofile, &Gsubprofile.
/* synch awtoranging on the slave channels */

if IFCHNLS = 1)

OneG_log_addr] IF1|[chan].

must be reinitialized to boot the DSPs.*/

OneG log addr ifp][chan].

&Gsystem)):

rcheck(ConfigureSlaveChannel(sessioniD[IFP1]. IF2. correction RAMpg. Gprofile. Gsubprofile. Gsystem)):

for(ifp = 1. ifp = SYSIFPS: ifp- +)
for(chan — 0: chan < IFCHNLS: chan++)

rcheck(ConfigureSlaveChannel(sessionIDf ifp]. chan. correction RAMpg. Gprofile, Gsubprofile.

7/* Set up to do the actual data capture */
for(ifp = 0; ifp <~ SYSIFPS: ifp++)
for(mezz = 0; mezz < MEZZperlFP: mezz++)

!
l

Gsystem)):

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-127

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

rcheck(hpe630x_ setCaptureDataFormat(sessionlD[ifp]. mezz. format)):
rcheck(hpe630x sctCaptureCollectInSRAMY(sessionID[ifp], mezz. collect)):
rcheck(hpe630x setCaptureDataOutput(sessionID{ifp]. mezz. output)):
rcheck(hpe630x _setMultipleTrigger Action(sessionlD[ifp]. mezz, VI FALSE)):
rcheck(hpe650x_setSuspendedCaptureTask(sessionID[ifp]. mezz, suspend)):
rcheck(hpe650x_setNumberOfSamplesToCapture(sessionlD]ifp]. mezz. sample)):
rcheck(hpe650x_startCapture(sessionID]ifp]. inezz)):
j
* Prearm -- required before anming. This stops any current activity */
for(ifp = 0; ifp = SYSIFPS: ifp- +)
for(mezz - 0: mezz < MEZZperIFP: mezzt)

rcheck(hpe6350x prearmDSPForDataCollection(sessionID[ifp]. mezz)):

/* Arm the master DSP. The master is defined as sessionID{ 0] in this example.*/

rcheck(hpe650x armDSPForDataCollection(sessionID| 0], MEZZ1. VI FALSE)):

/* Arm the slave DSPs */
({ MEZZperIFP = 1)
rcheek(hpe650x _armDSPForDataCollection(sessionlD[0]. MEZZ2. VI TRUE)):
if{ SYSIFPS = 1)
for(ifp = 1. ifp < SYSIFPS: ifp++)
for(mezz = 00 mezz < MEZZperlFP; mezzt 1)
rcheck(hpe630x armDSPForDataCollection{ sessionlD[ifp]. mezz. VI TRUE)):

* Prompt user for the trigger.*/
printf("Fire the trigger. Press Enter to continue'n”);
getchar():
/* sleep while data is captured *
mSleep(1000);
/* now stop the capture *
for(ifp = 0 ifp < SYSIFPS: ifp- 1)
for(mezz — 0. mezz < MEZZperlFP: mezz+-)
rcheck(hpe6350x stopCapture(sessiontDf ifp]. mezz }):
/* Close all IFPs*/
for(ifp - 0: ifp = SYSIFPS: ifp~+)
rcheck(hpe6350x close(sessionID] ifp])):

return VI_SUCCESS:

3-128 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

Scenario 13: Stream N Samples of ADC Data to the Link Port
Using Multiple Triggers

Use the following programming example to stream a specified number of
ADC (full rate) data samples to the link port using multiple triggers to begin

the streaming process.

Figure 3-38 shows the main process steps for this scenario.

(Start Scenario 13 ’

A

VX| Sessions

Initialize Modules / Open |yl gelect Monitoring Mode »

Synchronize Clocks for

Triggering

Setup Tuner and IF

Channels

L1 Synchronize Autoranging t—3»

Setup Capture Mode, Get
Ready to Capiure

PreArm and Arm for
Trigger

H

3} Send Triggers >

(Insert Code to Get Data
from Link Ports)

Stop Capture

H

—»/ Store / Display DatéiH Close VXI Sessions)

v

Figure 3-38 Scenario 13: Stream N Samples of ADC Data to the Link Port Using

Multiple Triggers

/* Scenario 13: Stream n-samples of ADC data to the link port

using multiple triggers.

Notes:

1. The following files must cxist in the same directory as the

3

source code.

"hpe630x.h"

"commonex.i"

"commonex.c”

"visatype.h"

"vpptype.h"

. The file "hpe630x.1ib" must be available during linking.

. This program requires the instatlation of SRAM on Mezzanine 1

of the IF Processor whose VXI address is stored in IFPvxiID[0].

SRAM is also required on other mezzanines in the system

if more than one IFP exists or if MEZZperIFP is greater than 1.

‘The user should read through the code modifying the

following. as necessary:

a.

Constants that define the number of 1FF channels, ¥
processors and mezzanines

Variables that define VXI addresses

SYNC_AUTORANGE controls whether all IFP autoranging
is synchronized.

TunerExists should be set to VI_TRUE if a tuner exists

E6501A/E6502A/E6503A VX Receiver User's Guide 3-129

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

otherwise is should be set to VI_FALSE.

e. SYNC CLOCKS is set to VI_TRUE when coherent measurements
across multiple mezzanines and/or multiple IFPs is desired.

f. "feenter” which defines the tuner's center frequency

. "AnalogFilter”.

suspend”. "format", "collect” and "output”

can be set to predefined constants as described below.

3. The commands hpe630x_init(), hpe650x _initlFChannel() and
hpe630x sctMonitoringMode() must be executed before other

commands. such as hpe650x_setTunerFrequency().

Disclaimer: This code is provided AS IS. It is a sample and unsupported.

*i

#include <stdlib.h

#include <stdio.h=

#define VISA

#include "hpe650x.h"

#include “commonex.h”

/* Number of IF channels */

#define IFCHNLS 1

/* Number of IF processors installed */

#define SYSIFPS 1

7* Number of mezzanines per [FP */

#define MEZZperIFP - 2

/* Extend for 1FPs.
This is an array for which cach element contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre [FPvxilD| SYSIFPS] = { "VXI10::43::INSTR"}:

* Extend for 1Fs.
There are arrays for which each element contains a VXI address integer.
The first dimension spans the system 1FPs. The second dimension spans
the IF channels for each IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. */

Vilnt32 LO log addr| SYSIFPS]| IFCHNLS] - { 415

Vilnt32 OneG log_addr] SYSIFPS][IFCHNLS] - { 42}

Vilnt32 ThreeG _log addr] SYSIFPS|[IFCHNLS] - | 40}:

 Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI TRUE") */

zdefine SYNC AUTORANGE VI FALSE

i* If the tuner exists, this constant should be set to VI TRUE*

#define Tunerkxists VI TRUE

/* Use this to switch on synchronized IFP clocks (VI _TRUE). This MUST be
done if there is more than on¢ mezzanine on an IFP. even if only one
mezzanine is used in the measurement. This is because of how the
trigger signal is propagated throughout multiple mezzanines.*/

fidefine SYNC CLOCKS VI TRUE

’/***

Don't change these. otherwise the code won't work anymore :-(

**/

#define IF1 0

#define IF2 1

#define IFP1 0

#define MEZZI 0

#define MEZZ2 |

3-130 E6501A/E6502A/E6503A VXI Receiver User's Guide

#define DDCL 0

fidetine DDC2 1

fidefine DDC3 2

ftdefine DDC4 3

#define DDC5 4

#define IF30KHZ 0

#define IF700KHZ |

#define IFSMHZ 2

#define RELATIVEO
#defineABSOLUTE |

#detine DATANOTREADY -1
#define CAPTURENOTRUNNING 0
#define CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0

#define ADCDATA 1

#define VXIBUS 0

#define PORT 1

#define TRIGGER |

#detine FREERUN 0

#define SRAM 1

#detine LINKPORTO

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

£k Kok ok kok o ok o R ok ok ok o KK ROR SR KR OR SOR KK KKK SRR R Rk Sk R o KRR RO ROR SOk B K R Rk R R Rk

/¥

The macro 'rcheck’ saves the return status in the variable 'ret'.

If the return status indicates an error. teheck” will call ‘error_exit'".

The 'reheck’ macro requires variables ret’ and ‘instrumentID’ be defined.

y
#define rcheek(A) (({result - A)

(result) : (error_exit(sessionlD[ifp].result.
int main()

1
b

int itp. mezz. chan:
ViStatusresult:

ViSesstonsessionID[SYSIFPS|:

Vilnt32 correction RAMpg. Gprofile.

VI_SUCCESS) ?
LINE

FILE)))

Gsubprofile, Gsystem:

Vilnt32 sample = 2000: /* Number of samples or 0 if taking indefinite length. */
Vilnt32 numberoftriggers — 3:
ViReal64 finit - 20¢6; 7* This number should be less than | GHz.*/
ViReal64 fcenter 2600e06: * This number can be any valid frequency for the tuner.*/
Vilnt32 AnalogFilter - IF700KHZ: /* Other choices are [F30KHZ or IFSMHZ */
ViBoolean suspend — TRIGGER: /* Choices are FREERUN or TRIGGER */
ViBoolean tormat = ADCDATA: /* Choices are DIGITALIQ or ADCDATA */
ViBoolean collect — LINKPORT; /* Choices are SRAM or LINKPORT */
ViBoolean output = PORT: /* Choices are VXIBUS or PORT */
/* Configure the receiver state, iniualize all IFP's and IF's */

for(ifp -~ 02 ifp < SYSIFPS: ifpt+-)
i

rcheck(hpe630x init(IFPvxilD[ifp}, VI TRUE. VI TRUE. &sessionID[ifp])):

for(chan = 0: chan < [IFCHNLS; chan++)

/* Initialize the IF channels including establishing communication to their addresses. The initial

rcheck(hpe650x _initIFChannel(sessionID[itp]. chan. TunerExists. finit. LO_log_addrf ifp][chan].

ifp][chan))):

\
i

frequency needs to be below I Gilz.*/

OneG log addr| ifp)| chan]. ThreeG_log_addr[

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-131

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

* Put all IFPs into monitoring mode */
for(ifp = 0: ifp = SYSIFPS: ifp++)
for(mezz = 0: mezz < MEZZperlFP: mezz - +)
rcheck(hpe650x_setMonitoringMode(sessionlD| ifp]. mezz)):
/* Synchronize clocks between all mezzanines and [FPs. The IFP at sessionID[0] is always the master in this example.*/
iff VI TRUE — SYNC_CLOCKS)
|

1

* Instructs the master IFP to send its clock out VXI. Since the sampie clock is also the DSP clock, this action risks causing the DSPs to hang. Therefore
all the modulues are also reinitialized to reboot the DSPs.*/

rcheck(ConfigureMasterIFP(sessionIDf 0])):
rcheck(hpe650x_init(IFPvxilD[IF1]. VI TRUE. VI TRUE. &sessionID[1F1])):
for(chan - 0: chan < IFCHNLS; chan++)

rcheck(hpe650x_initlFChannel(sessionlD[IF1]. chan. TunerExists. finit. LO tog addr[IF1]f chan]. OneG log addr[IFT]] chan].
ThreeG_tog_addr[IF1][chan})):

for(mezz - 0: mezz - MEZZperlFP: mezz+~)
rcheck(hpe630x setMonitoringMode(sessionlD[IF 1], mezz)):
/* Now configure all slave IFPs. The slaves are instructed to accept the master clock. Finally. the slaves must be reinitialized to boot the DSPs.*/
for(ifp - 11 ifp <o SYSIFPS: ifp—-+)
{
rcheck(ConfigureSlavelFP(sessionID][ifp])):
rcheck(hpe6350x _init(IFPvxilD[ifp]. VI TRUE. VI_TRUE. &sessionID[ifp])):
for(chan = 0: chan < IFCHNLS: chan+)

rcheck(hpe630x initIFChannel(sessionID[ifp]. chan. TunerExists. finit. LO_log_addr[ifp]} chan]. OneG _log_addr| itp]{ chan].
ThreeG_log_addr] ifp][chan])):

for(mezz — 0: mezz <= MEZZperlFP: mezz+)
reheck{ hpe650x_setMonitoringMode(sessionlD| ifp]. mezz)):
i
* Set up and tune the IFs */
for(ifp = 0:ifp = SYSIFPS: itpt +)
for(chan - 0: chan < [FCHNLS: chant =)

/
1

i* Set the tuner frequency to the value of "feenter*/
rcheck(hpe650x_setTunerFrequency(sessionlD] ifp]. chan. feenter)):
/* Set the analog filter to either 30 kHz. 700 kHz or 8 MHz using "AnalogFilter"*/
rcheck(hpe630x_setAnalogFilter(sessionID[ifp]. chan. AnalogFilter)):
/* Activate autorange once after the initialization of each mezzanine.*/
rcheck(hpe650x activateAutoranging(sessionID[ifp]. chan)):
j
/* synchronize autoranging on all modules in system */
ift VI TRUE == SYNC AUTORANGE)
!
/* sync autoranging on master channel */
rcheck(ConfigureMasterChannel(sessionlDf IFP1], IFI. &correction RAMpg. &Gprofile. &Gsubprofile. &Gsystem)):
/* synch autoranging on the slave channels */
if([FCHNLS = 1)
rcheck(ConfigureSlaveChannel(sessionlD[IFP1], IF2. correction RAMpg. Gprofile. Gsubprofile. Gsystem)):
for(ifp — 1: ifp < SYSIFPS: ifp+ +)
for(chan — 0: chan < IFCHNLS: chan~+)

rcheck(ConfigureSlaveChannel(sessionID[ifp]. chan. correction_RAMpe. Gprofite. Gsubprofile. Gsystem)):

/* Set up to do the actual data capture */
for(ifp - 0:ifp < SYSIFPS: ifp+ i)
for(mezz - 0; mezz - MEZZperlFP: mezz~+)

3-132 E6501A/E6502A/E6503A VX! Receiver User’'s Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

rcheck(hpe630x setCaptureDataFormat(sessionlD|ifp]. mezz, format)):

rcheck(hpe6350x setCaptureCollectInSRAM(sessionID[ifp]. mezz, collect));
rcheek(ipe630x_setCaptureDataOutput(sessionlD[ifp]. mezz, output)):

rcheck(ipe650x_setMultipleTriggerAction{ sessionID[ifp], mezz. VI_TRUE));
rcheck(hpe650x _ setCaptureTrigger(sessionID[ifp], mezz. numberoftriggers)):
rcheck(hpe630x setSuspendedCaptureTask(sessionID[ifp], mezz. suspend)):
rcheck(hpe650x_setNumberOfSamplesToCapture(sessionID[ifp]. mezz, sample));
rcheck(hpe630x_startCapture(sessionID[ifp]. mezz));

1
1

* Prearm -- required before arming. This stops any current activity */
for(ifp - 0: ifp = SYSIFPS:ifp~+)
for(mezz — 0; mezz << MEZZperIFP: mezz++)

rcheck(hpe650x prearmDSPForDataCollection(sessionlD] ifp]. mezz)):

/* Arm the master DSP. The master is defined as sessionID[0] in this example */

rcheck(hpe630x armDSPForDataCollection(sessionID[0], MEZZ1. VI FALSE)):

/* Arm the slave DSPs */
it MEZZperlFP = 1)
rcheck(hpe650x_armDSPForDataCollection(sessionID]0]. MEZZ2. VI TRUE)):
if{ SYSIFPS = 1)
for(ifp = Lz ifp < SYSIFPS:ifp- 1)
for(mezz = 0: mezz <- MEZZperlFP: mezz+ +)

reheck(hpe630x armDSPForDataCollection(sessionID[ifp]. mezz, VI_TRUL)):

/* Prompt user for the wrigger.®
printf("Fire the triggers. Press Enter to continue'n”);
getehar(),
/* sleep while data is captured */
mSleep(1000):
/* now stop the capture */
for(ifp — 0: ifp < SYSIFPS: ifpt -)
for(mezz — 0: mezz <~ MEZZperlkP; mezz- 1)
reheck(hpe650x_stopCapture(sessionID[ifp]. mezz)):
/* Close all IFPs*/
for(ifp — 0 ifp = SYSIFPS: ifpt +)
reheck(hpe630x close(sessionID[1fp])):

return VI_SUCCESS:

E6501A/E6502A/E6503A VX! Receiver User's Guide 3-133

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

Scenario 14: Capture N Samples of Full Rate ADC Data Across

the VXI Bus

Use the following programming example to capture a specified number of
ADC (full rate) data samples across the VXI bus without the use of a trigger

to begin the capture process.

Figure 3-39 shows the main process steps for this scenario.

| Start Scenario 14 ,

Y

Initialize Modutes / Open Select Monitoring Mode
VXI Sessions

Setu%;::;ife‘asﬂd IF I_>| Synchronize Autoranging }—’

Setup Capture Mode,
Start Capture

Get ADC Data

\——7/ Storae / Display Data /[—>(C)ose VX| Sessions)

Figure 3-39 Scenario 14: Capture N Samples of Full Rate ADC Data Across the VXI

Bus

Scenario 14:Capture n-samples of ADC data and output to

the VXI bus without an external trigger.

Notes:

1. The tollowing fites must exist in the same directory as the
source code.
"lipe650x.h"
"commonex.h"
"commonex.c”
"visatype.h"
"vpptype.h”

2. The file "hpe650x.1ib" must be available during linking.

3. This program requires the installation of SRAM on Mezzaning |
of the TF Processor whose VXI address is stored in IFPvxilD[0].
SRAM is also required on other mezzanines in the system

it more than one IFP exists or if MEZZperIFP is greater than 1.

4. The user should read through the code modifying the

following. as necessary:

a. Constants that define the number of IF channels. IF
processors and mezzanines

b. Variables that define VXI addresses

c. SYNC AUTORANGE controls whether all IFP autoranging
is synchronized.

d. TunerExists should be set to VI TRUE if a tuner exists
otherwise is should be set to VI_FALSE.

c. SYNC CLOCKS is set to VI TRUE when coherent measurements
across multiple mezzanines and/or multiple IFPs is desired.

f. “feenter” which defines the tuner's center frequency

g "AnalogFilter”. "suspend”, "format”. "collect” and "output”

can be set to predefined constants as described below.

anl’

3-134 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Using the Receiver

Synchronizing Multiple IF Processors and Capturing Data

5. ‘Ihe commands hpe6350x init(). hpe650x_initIFChannel() and
hpe6350x setMonitoringMode() must be executed before other

commands, such as hpe630x_setTunerFrequency().

Disclaimer: This code is provided AS IS. Itis a sample and unsupported.

*,

#include ~stdlib v

#include “stdio.h-

#define VISA

#include "hpe650x.h"

#include "commonex.h”

/* Number of IF channels */

#detine IFCHNLS I

/* Number of IF processors installed */

#define SYSIFPS 1

/* Number of mezzanines per IFP */

#define MEZZperIFP 2

/* Extend for IFPs.
This is an array for which each element contains a VXI address string.
This example shows a system with only one IFP. */

ViRsre [FPvxilD[SYSIFPS] = | "VXI10::43:: INSTR"}:

/* Extend for Its.
There are arrays for which each element contains a VXI address integer.
The first dimension spans the system IFPs. The second dimension spans
the IF channels for cach IF processor. This example shows the VXI
moxtule addresses for one 3 Gz tuner. */

Vilnt32 LO log addr[SYSIFPS|{ IFCHNLS] -~ { 141}:

Vilnt32 OneG log addr[SYSHPS][IFCHNLS] - { 170} -

Vilnt32 ThreeG log addr[SYSIFPS][IFCHNLS] - 4 40}

/* Use this to switch on sychronized autorange (Change “VI_FALSE" to "VI TRUE") */

#define SYNC_AUTORANGE VI TRUE

/* If the tuner exists. this constant should be set to VI_TRUE*/

#define Tunerkxists VI TRUE

AR R R R KRR KR KR KRR R KR KR RO R R R

Don't change these. otherwise the code won't work anymore :-(

FR AR AR R R AR R R HOR R R R KRR R KR R B R

#define IF1 0

#define [F2 1

#define [FP1 0

#define MEZZ1 0

#define MEZZ2 1

#detfine DDC1 0

#define DDC2 |

#define DDC3 2

#define DDC4 3

#define DDCS 4

#define [F30KHZ 0

#define IF700KH7Z 1

#define IFRMHZ. 2

#define RELATIVEO

#defineABSOLUTE i

E6501A/E6502A/E6503A VXI Receiver User’s Guide 3-135

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

#detine DATANOTRLADY -1
#define CAPTURENOTRUNNING 0
#define CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0

#define ADCDATA |

#define VXIBUS 0

#define PORT |

fidetinc TRIGGER 1

fidefine FREERUN 0

#define SRAM |

#define LINKPORTO

R RO R RO SR R RO R R KR R R ks Rk Rk ek

/%
The macro 'rcheck’ saves the return status in the variable 'ret'.
If the return status indicates an error. 'rcheck’ will call 'error_exit'.
The 'rcheck’ macro requires variables ‘ret’ and 'instrumentID’ be defined.
*/
#define rcheck(A) (((result = A) = VI_SUCCESS) 7
(result) : (error_exit(sessiontD[ifp].result._ LINE ., FILE_)))
int main()

1
i

int i
nt fp. mezz, chan:
ViSiatusresult;

ViSessionsession]Df SYSIFPS]:

Vilnt32 correction RAMpg, Gprofile, Gsubprofile, Gsysten:
Vilnt32 sample = 2000:

Vilnt32 length — 2000

Vilntio ADCData| 2000]:

ViReal64 finit ~ 20e6: i* T'his number should be less than | GHz.*/
ViReal64 feenter 2600e6: i* This number can be any valid frequency for the tuner.*/
Vilnt32 AnalogFilter ~ IFSMHZ: * QOther choices are IF30KHZ or IFSMHZ */
ViBoolean suspend ~ FREERUN; /* Choices are FREERUN or TRIGGER */
ViBoolean format = ADCDATA: /* Choices are DIGITALIQ or ADCDATA *
ViBoolean collect = SRAM; /* Choices are SRAM or LINKPORT */
ViBoolean output = VXIBUS: /* Choices are VXIBUS or PORT *

/* Configure the receiver state, initialize all IFP's and IF's */
for(ifp — 0:ifp = SYSIFPS: ifp+ +)

¢
'

rcheek(hpe650x init(1FPvxiID[ifp]. VI TRUE. VI TRUE, &sessionID| ifp])):
for(chan - 0: chan < JFCHNLS: chan++)

/* Initialize the IF channels including cstablishing communication to their addresses. The initial frequency needs to be below | GHz.*/
rcheck(hpe630x initIFChannel(sessionID[ifp}. chan. TunerExists. finit. LO log addr{ ifp][chan|. OneG log addr| ifp][chan]. Three(_log_addr[

itp][chan])):

]
i

/* Put all IFPs into monitoring mode */
for(ifp - 0; itp ~ SYSIFPS: ifp+ -)
for(mezz - 0: mezz < MEZZperlFP; mezzt +)

rcheck(hpe650x setMonitoringMode(sessionID] itp]. mezz));

/* Set up and tune the IFs */

3-136 E6501A/E6502A/E6503A VX Receiver User’s Guide

Using the Receiver
Synchronizing Mulitiple IF Processors and Capturing Data

for(ifp = 0; itp < SYSIFPS: ifpt+)
for(chan 0: chan -~ [FCHNLS: chan+-)

]
i

i* Set the tuner frequency to the value of "feenter"*/
rcheck(hpe650x_setTunerkrequency(sessionlD] ifp]. chan. feenter));
/* Sct the analog filter to either 30 kHz, 700 kHz or 8 MHz using "AnalogFilter”*/
rcheck(hpe650x setAnalogFilter(sessionID]ifp], chan. AnalogFilter)):
/* Activate autorange once atter the initialization of each mezzanine.*/
rcheck(hpe630x activateAutoranging(sessionIDfifp]. chan))
j
/* synchronize autoranging on ail modules in system */
iff VI TRUE = SYNC AUTORANGE)
§
:

/* sync autoranging on master channel */

rcheck(ConfigureMasterChannel(sessionlD| IFP1], IFI. &correction_ RAMpg. &Gprofile, &Gsubprofile. &Gsystem)):

/* synch autoranging on the slave channels */
if(IFCHNLS = 1)

rcheck(ConfigureSlaveChannel(sessionID[1FP1], IF2. correction_RAMpg. Gprofile, Gsubprofile. Gsystem)):

for(ifp - 1:ifp = SYSIFPS: ifp+ t)
for(chan — 0: chan -~ IFCHNLS: chan—+)
rcheck(ConfigureSlaveChannel(sessionIDJ ifp]. chan. correction_RAMpg. Gprofile. Gsubprofile. Gsystem)):

1
i

* Set up to do the actual data capture */
for(ifp -- 01 ifp < SYSIFPS: ifpt +)
for(mezz - 0: mezz << MEZZperlFP: mezz—+)
!
rcheck(hpe630x_setCaptureDataFormat(sessionlD[ifp]. mezz. format)):
reheck(hpe630x_setCaptureCollectInSRAM(sessionlD[ifp]. mezz. collect)):
rcheck(hpe630xsetCaptureDataOutput(sessionID[ifp]. mezz. output)):
rcheck(hpe630x_setSuspendedCaptureTask(sessionID[ifp]. mezz. suspend)):
rcheck(hpe630x setNumberOfSamplesToCapture(sessionlD[ifp]. mezz. sample)):

rcheck(hpe6S0x startCapture(sessionlD[ifp]. mezz)):

/* Loop until the DSP finishes giving us the code across the bus */

result = hpe650x getCaptureFullRate ADCData(sessionID[0]. MEZZ1. ADCData, &length):
1 while (DATANOTREADY — result):
if{ VI SUCCESS —= result)
!

FILE *stream;

stream = fopen("mezladc.txt”, "w"):

for(1-: 0.1 length; i++)

fprintf(stream, "%35d:n". ADCData[1}):

tclose(stream):

for(1 —0:1 < length: i+ t)

printf(” ADC[%4d] = %5d 'n". i. ADCDatal i});

do

/* Loop until the DSP finishes giving us the code across the bus */

E6501A/E6502A/E6503A VX! Receiver User's Guide 3-137

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

result = hpe630x_getCaptureFullRateADCData(sessionID] 0. MEZZ2. ADCData. &length),
v while { DATANOTREADY == result):
if{ VI SUCCESS —— result)

1
1

FILE *stream:
stream — fopen("mez2ade.txt”. “w")
for(i = 01 < length: i+-)
fprintf(stream, "%3d'n". ADCDatal i]):

felose(stream):

for(i-- 01 lenpthyi-t)
printf(” ADC[%4d] — %5d ", i. ADCDatal i]):

1
|

/* Close all [FPs*/
for(itp = 0. ifp < SYSIFPS: ifp- +)

rcheek(hpe630x close(sessionID| ifp]));
return VI SUCCESS;

3-138 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

Scenario 15: Capture N Samples of ADC Data From VXI Bus
Using a Trigger

Use the following programming example to capture a specified number of
ADC (full rate) data samples across the VXI bus using a trigger to begin the
capture process.

Figure 3-40 shows the main process steps for this scenario.

‘ Start Scenario 15 ’

A 4

initialize PJIpdulgs / Open »| Select Monitoring Mode) Synchromze Clocks for Setup Tuner and tF
VXi Sessions Triggering Channels

l—-} Setup and Tune DDCs] Synchronize Autoranging F—»1 Seugé%gs‘g%g&iz"“ —

PreArm and Arm for . -
Trigger . Send Trigger | Get ADC Data f—

l——»/ Store / Display Data /L>CCIose VX| Sessions)

Figure 3-40 Scenario 15: Capture N Samples of ADC Data From VXI Bus Using a
Trigger

Scenario §5:Capture n-samples of ADC data and output to

the VXI bus with an external trigger.

Notes:

1

. The following files must exist in the same directory as the
source code.
“hpe650x.h”
"commonex.h”
"commonex.c”
"visatype.h"”

"vpptype.h”

. The file "hpe650x.1ib" must be available during linking.

3. This program requires the installation of SRAM on Mezzanine 1

of the IF Processor whose VXTI address is stored in IFPyxiID[0].
SRAM is also required on other mezzanines in the system

if more than one [FP exists or if MEZZperIFP is greater than 1.

The user should read through the code modifying the

following. as necessary:

a. Constants that define the number of IF channels, IF
processors and mezzanines

b. Varijables that define VXI addresses

c. SYNC AUTORANGE controls whether all TFP autoranging
is synchronized.

d. TunerExists should be set to VI TRUE if a tuner exists

otherwise is should be set to VI FALSE.

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-139

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

e. SYNC CLOCKS is set to VI_TRUE when coherent measurements
across multiple mezzanines and/or multiple IFPs is desired.
f. "fcenter” which defines the tuner's center frequency

non

"AnalogFilter”, "suspend”. "format”, "collect” and "output”

s

can be set to predefined constants as described below.

W

The commands hpe650x init(). hpe630x_initIFChannel() and
hipe630x_setMonitoringMode() must be executed before other

commands, such as hpe650x setTunerFrequency().

Disclaimer: This code is provided AS IS, Itis a sample and unsupported.
y
Zinclude <stdlib.h=>
#include <stdio.h>
#define VISA
#include "hpe650x.h"
#include "commonex.h"
/* Number of IF channels */
fidefine IFCHNLS t
* Number of IF processors installed */
#define SYSIFPS |
/* Number of mezzanines per [FP */
i#define MEZZperlkP 2
/* Extend for 1FPs.
This is an array for which cach element contains a VXI address string.
This example shows a system with only one IFP. */
ViRsre [FPvxilD[SYSIFPS) - ["VXI0:43::INSTR"}:
/* Extend for IFs.
There are arrays for which cach element contains a VXI address integer.
The first dimension spans the system IFPs. The second dimension spans
the IF channels for cach IF processor. This example shows the VXI
module addresses for one 3 GHz tuner. */
Vilnt32 LO log addr| SYSIFPS][IFCHNLS] = { 41}:
Vilt32 OneG tog addr[SYSIFPS][{ IFCHNLS] = | 42}
Vilnt32 ThreeG log addr[SYSIFPS]] IFCHNLS] - { 40}:
/* Use this to switch on sychronized autorange (Change "VI_FALSE" to "VI_TRUE") */
#define SYNC AUTORANGE VI _TRUE
/* If the tuner exists. this constant should be set to VI TRUE*/
#define TunerExists VI TRUL
/* Use this to switch on synchronized IFP clocks (VI_TRUE). This MUST be
done if there is more than one mezzanine on an IFP, even if only one
mezzanine is used in the measurement. This is because of how the
trigger signal is propagated throughout multiple mezzanines. */
#define SYNC_CLOCKS VI TRUE
/*************X***
Don't change these. otherwise the code won't work anymore :-(
***********"F**‘,’
fidefine IF1 O
#define IF2 1
#define IFP1 0
#define MEZZ] 0
Fdefine MEZZ2 |
#define DDCL O
édefine DDC2 1

3-140 E6501A/E6502A/E6503A VXI Receiver User's Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

#define DDC3 2

#detine DDC4 3

#define DDCS5 4

#define IF30KHZ 0

#define IF700KHZ |

#define IFSMHZ 2

fidefine RELATIVEO
#detineABSOLUTE 1

#define DATANOTREADY -1
#define CAPTURENOTRUNNING 0
#define CAPTUREDATANOTREADY 2
#define CAPTUREDATAREADY 3
#define DIGITALIQ 0

#define ADCDATA 1

fidefine VXIBUS 0

#define PORT 1

fidefine TRIGGER 1

#define FREERUN 0

#define SRAM 1

#define LINKPORTO

/***r'
’,’*
Fhe macro 'rcheck’ saves the return status in the variable 'ret’.
If the return status indicates an crror, ‘reheck’ will call "error_exit'.
The 'rcheck’ macro requires variables 'ret’ and 'instrumentID' be defined.
*/
fidefine rcheck(A) ({{(result = A) — VI _SUCCESS) ?
(result) : (error exit(sessionID[ifp].result. LINE . FILE)))
int main()

1
|

int i

int ifp, mezz, chan:

ViStatusresult:

ViSessionsessionlD[SYSIFPS|:

Vilnt32 correction RAMpg. Gprofile. Gsubprofile. Gsystem:
Vilnt32 sample = 2000:

Vilnt32 length — 2000

Vilnt16 ADCData| 2000];

ViReal64 finit — 20¢6: * This number should be less than | GHz*/
ViReal64 feenter = 2600¢6: * This number can be any valid frequency for the tuner.*/
Vilnt32 AnalogFilter - [FSMHZ; /* Other choices are IF30KHZ or IFSMHZ */
ViBoolean suspend = TRIGGER: * Choices are FREERUN or TRIGGER */
ViBoolean format - ADCDATA: /* Choices are DIGITALIQ or ADCDATA *f
ViBoolean collect - SRAM: /* Choices are SRAM or LINKPORT */
ViBoolean output — VXIBUS: /* Choices are VXIBUS or PORT */

/* Configure the recciver state. initialize atl IFP's and 1F's */
for(ifp = 0 ifp <~ SYSIFPS: ifp++)

f
\

rcheck(hpe630x_init(1FPvxilD[ifp]. VI TRUE., VI_TRUE, &sessionID] ifp])):
for(chan - 0; chan < IFCHNLS; chan+)
* Initialize the IF channels including establishing communication to their addresses. The initial frequency needs to be betow | GHz.*/

rcheck(hpe650x_initIFChannel(sessionID[ifp]. chan, TunerExists. finit. LO_log_addr[ifp}[chan]. OneG_log addr] ifp][chan], ThreeG_log addr|
ifp]| chan])):

E6501A/E6502A/E6503A VXI Receiver User's Guide 3-141

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

/* Put all IFPs into monitoring mode */
for(ifp -- 0. ifp < SYSIFPS:ifp:+)
for(mezz = 0: mezz < MEZZperlFP: mezz+t 1)
rcheek(hpe6350x_setMonitoringMode(sessionlD[ifp], mezz)):
* Synchronize clocks between all mezzanines and IFPs. The [FP at sessionID[0] is always the master in this example.*/
if(VI TRUE =:: SYNC_CLOCKS)
|

t

/* Instructs the master 1FP to send its clock out VXI. Since the sample clock is also the DSP clock, this action risks causing the DSPs to hang. Therefore
all the modulues are also reinitialized to reboot the DSPs.*/

rcheck(ConfigureMasterIFP(sessionID[0])):
rcheck(hpe650x init(IFPvxiID] IFI]. VI_TRUE. VI_TRUE. &sessionID[IF1])):
for(chan — 0: chan = IFCHNLS: chant +)

rcheck(hpe630x initlFChannel(sessionID[IF1]. chan. TunerExists. finit. LO_log_addr[IFT]{ chan]. OneG_log addr[IFT]] chan],
ThreeG log addr| IF1]{ chan])):

for(mezz — 0; mezz < MEZZperlFP: mezz++)
rcheck(hpe650x_setMonitoringMode(sessionID[IF1]. mezz)):
/* Now configure all slave IFPs. The slaves are instructed to accept the master clock. Finally. the slaves must be reinitialized to boot the DSPs.*/
for(ifp = 1. ifp < SYSIFPS: ifp~+)
{
rcheck(ConfigureSlavelFP(sessionIDf ifp])):
rcheck(hpe630x_init(IFPvxilD[ifp], VI_TRUE, VI_TRUE. &sessionlD[ifp])):
for(chan - 0: chan -~ [FCHNLS; chan++)

rcheck(hpe630x initIFChannel(sessionID[ifp]. chan. TunerExists. finit. LO log addrf ifp][chan]. OneG_log addr[ifp][chan].
ThreeG log_addr{ ifp][chan])):

for(mezz == 0: mezz <« MEZZperli:P. mezz-+)
rcheek(hpe650x setMonitoringMode(sessionID[ifp]. mezz)):

v
'

/* Set up and tune the IFs */
for(ifp -- 02 ifp == SYSIFPS: ifp+ -)
for(chan - 0: chan == IFCHNLS: chan~+)
!
/* Set the tuner frequency to the value of "feenter”*/
rcheck(hpe630x setTunerfrequency(sessionlD| ifp). chan. feenter)):
* Set the analog filter to either 30 kHz, 700 kllz or 8 MHz using "AnalogFilter"*/
rcheck(hpe650x setAnalogFilter(sessionID(ifp]). chan. AnalogFilter)):
* Activate autorange once after the initialization of cach mezzanine */
rcheck(hpe630x activateAutoranging(sessionlD[ifp]. chan)):
H
/* synchronize autoranging on all modules in system */
if(VI TRUE - SYNC AUTORANGE)
i
i

/* syne autoranging on master channel */

rcheck(ConfigureMasterChannel(sessionIDf IFP1]L IF1, &correction_RAMpg. & Gprofile. &Gsubprofile, &Gsystem));

/* synch autoranging on the slave channels */
it IFCHNLS = 1)

rcheck(ConfigureSlaveChannel(sessionlD[IFP1]. IF2, correction_RAMpy, Gprofile. Gsubprofile. Gsystem));

3-142 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

for(ifp — 10 ifp < SYSIFPS: ifp+~)
for(chan - 0: chan <2 IFCHNLS: chan+-)
rcheck(ConfigureSlaveChannel(sessionID[ifp]. chan. correction. RAMpg. Gprofile, Gsubprofile. Gsystem)):

]
i

/* Set up to do the actual data capture */
for(ifp - 0:ifp == SYSIFPS: ifp++)
for(mezz - 0: mezz = MEZZperlFP: mezz++)

f
)

rcheck(hpe630x_setCaptureDataFormat(sessionID[ifp]. mezz. format)):

rcheck(hpe630x_setCaptureCollectinSRAM(sessionIDfifp]. mezz. collect)):
rcheck(hpe630x setCaptureDataOutput(sessionID[ifp]. mezz. output)):

rcheck(hpe650x_setSuspendedCaptureTask(sessionID[ifp}. mezz. suspend)):
rcheck(hpe650x_setNumberOfSamplesToCapture(sessionID[ifp]. mezz, sample)):
rcheck(hpe6350x startCapture(sessionID[ifp], mezz)):

1
|

* Prearm -- required before arming. This stops any current activity.*/
for(ifp = 0: ifp < SYSIFPS: ifp+)
for(mezz - 0: mezz < MEZZperlFP; mezz++)

rcheck(hpe630x_prearmDSPForDataCollection(sessionlD] ifp]. mezz)):

/* Ann the master DSP. The master is defined as sessionID[0] in this example ¥/

rcheck(hpe650x_armDSPForDataCollection(sessionlD] 0]. MEZZ1. VI FALSE)):

/* Arm the slave DSPs */
it MEZZperIFP = 1)
rcheck(hpe650x armDSPForDataCollection(sessionID0]. MEZZ2. VI_TRUE)):
it SYSIFPS =~ 1)
for(ifp = 1. ifp < SYSIFPS:itp++)
for(mezz - 0: mezz <= MEZZperlFP; mezz++)
rcheck(hpe630x armDSPForDataCollection(sessionIDfitp]. mezz. VI TRUE)):

/* Prompt user for the trigger */

printf("Fire the trigger. Press Enter to continue'n™);
getchar();

/* sleep while data is captured */

mSleep(1000):

do

1
1

/* Loop until the DSP finishes giving us the code across the bus */

result = hpe650x _getCapturelullRate ADCData(sessionID[0]. MEZZ1. ADCData. &length);
1 while (DATANOTREADY —= result):
if(VI_SUCCESS == resuit)

{
FILE *stream:
stream = fopen("mezlade.txt”™. "w")
for(1+ 0.1~ length: i++)
fprintf(stream, "%3dn". ADCData[i]);
felose(stream);
for(1= 0:1+ length: i~+)
printf("* ADC[%4d] = %5d n". i. ADCData[i]);
H
do

/* Loop until the DSP finishes giving us the code across the bus */

result — hpe650x_getCaptureFullRateADCData(sessionlD[0], MEZZ2. ADCData. &length }:

EB6501A/E6502A/E6503A VXI Receiver User's Guide 3-143

Using the Receiver
Synchronizing Multiple IF Processors and Capturing Data

1 while (DATANOTREADY —— result):
(VI SUCCESS — result)

1
1

FILE *stream;
stream — fopen("mez2ade.txt""w")
for(i—0:1< length: 1++)

fprintf(stream. "%5din". ADCDatal i]):

felose(stream);

for(i - 0:1< length; i++)
printf("* ADC[%4d] = %5d ", i, ADCDatal i]):

1
)

/* Close all IFPs*/
for(ifp = 0: ifp < SYSIFPS:itp- +)

rcheck(hpe650x _close(sessionID[ifp])):
return VI SUCCESS:

3-144 E6501A/E6502A/E6503A VXI Receiver User's Guide

Theory of Operation

4 Theory of Operation

In This Chapter

® E6501A, E6502A, E6503A VXI Receiver Description

® E6401A 20to 1000 MHz Downconverter Operation

® E6402A Local Oscillator Operation

® E6403A 1000 to 3000 MHz Block Downconverter Operation
® E6404A IF Processor Operation

Note The software driver supports tuning the receiver down to 2 MHz. However,
specifications, typicals, and characteristics do not apply below 20 MHz.

E6501A/E6502A/E6503A VXI Receiver User’s Guide 4-1

Theory of Operation
E6501A/E6502A/E6503A VXI Receiver Description

E6501A/E6502A/E6503A VXI Receiver
Description

Refer to the end of this chapter for simplified block diagrams of the IF
processor, LO, and downconverters.

The standard E6501A VXI receiver consists of an E6401A

20-1000 MHz downconverter module, an E6402A local oscillator module,
and an E6404A IF processor module. This configuration covers an input
frequency range from 20 to 1000 MHz. The E6401A translates this input
signal to a 21.4 MHz IF output signal. The IF output signal has
approximately 16 MHz of bandwidth. The E6402A module provides the Ist
and 2nd LO signals for the E6401A module.

The E6403A option 003 downconverter extends the input frequency range to
provide continuous frequency coverage from 20 to 3000 MHz. The £6403A
module translates the 1000 to 3000 MHz band into the frequency range of
the E6401A 20—-1000 MHz downconverter module. The E6402A module
provides the block downconverter LO signal to the E6403A module.

4-2 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Preselector Bands

Table 4-1

Theory of Operation
E6501A/E6502A/E6503A VXI Receiver Description

There are ten preselector bands defined for the E6401A downconverter
module and an additional four bands defined for the E6403 A block
downconverter module.

Preselector Bands

Module Preselector Characteristic
Band Filter Frequency
Range and Band
Switching Points

(MHz)
E6401A Downconverter 1 (40 LPF)
27 40 to 60”
3) 60 fo 84
: - 847'(70 118
5 118 t0 170 7
6 o 170 to 230 7
777 230 to 350
é 350 to 450 -
s 450 10 750 ’
10 750 t0 1000
E6403A Block Downconverter 11 1000 to 1250
172777” 1275(7th0 1800 o
137 7 718(7)0 to 24007
" 2400103000

Note: All preselector bands except 11 and 12 are frequency inverted at the
tuner output. The receiver performs this inversion automatically.

Each preselector band (except band 1) is suboctave, ranging in frequency by
less than two-to-one from highest to lowest frequency. Using suboctave
preselection decreases the chance of the second harmonic of a strong signal
(at half the desired frequency) from appearing as the desired signal.
Suboctave preselection increases the second-order spurious-free dynamic
range of the receiver.

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-3

Theory of Operation
E6401A 20 to 1000 MHz Downconverter Operation

Functions

Description

Note

E6401A 20 to 1000 MHz Downconverter
Operation

Attenuation
Preselection
Preamplification
Upconversion
Image filtering
Downconversion
Gain control

The E6401A 20-1000 MHz downconverter module converts input signals in
the frequency range of 20 to 1000 MHz to a 21.4 MHz [F output frequency.

The 20-1000 MHz input signal path splits into two main paths, each having
a solid-state 0 to 30 dB input attenuator (adjustable in 10 dB steps) to allow
increased signal handling capability. Signals below 450 MHz are switched
to the path that splits into eight preselector band paths (preselector bands 1
through 8). Signals above 450 MHz are switched to the path that splits into
two preselector band paths (preselector bands 9 and 10). Nine of the ten
preselector paths each have a filter to allow for suboctave preselection. After
preselector filtering, the signal passes through a 550 MHz low-pass filter in
preselector bands 1 through 8 path or a 1 GHz low-pass filter in the
preselector bands 9 and 10 path. These low-pass filters offer added rejection
of'the Ist LO and IF signals. The two signal paths are switched into one
common signal path.

For the unused input path ({low path or high path), the input attenuator is set
to 30 dB of attenuation and the preselector switches are set for optimum
isolation.

The common signal path passes through a preamplifier which compensates
for losses in the preselector switches and filters. An additional 1 GHz
low-pass filter follows for more LO and IF rejection. The signal is then
upconverted in the first mixer to a Ist IF frequency of 1221.4 MHz.
Bandpass filters provide image rejection at the 1st IF frequency. Two
amplifiers in the Ist IF path compensate for loss in these filters. The 1st IF
signal is downconverted to the 2nd [F frequency of 21.4 MHz in the 2nd
mixer. The signal passes through a 30 MHz low-pass filter and a final
amplifier stage. Before the 21.4 MHz IF output, a solid-state 0 to 15 dB
variable output attenuator, adjustable in 1 dB steps, sets the approximate
gain of the E6401A module to +10 dB in the receiver system.

4-4 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Inputs and Outputs

Theory of Operation
E6401A 20 to 1000 MHz Downconverter Operation

Output attenuator values for several frequencies in each preselector band are
stored by the factory in each module’s EEPROM. These values are read
once and stored as a table in the IFF processor.

The block downconverter input path accepts the output signal from the
optional E6403A 1000-3000 MHz block downconverter module. This
signal path has two switched filters. These filters prevent undesired mixing
products from mixing with the input signal and giving the appearance of
degraded IF rejection. After passing through one of the two filters, the signal
is switched into the path used by preselector bands 9 and 10 just before the
I GHz low-pass filter.

The system bandwidth is set to approximately 16 MHz by the Ist IF
bandpass filters centered at 1221.4 MHz. However, other filters in the signal
path can also affect the overall bandwidth. In the lower preselector bands, if
the tuned frequency is near the edge of a preselector band, the stopband
skirts of the preselector filter will contribute to a narrowing of the overall
bandwidth.

The LO signals for the first and second mixers come from the E6402A. Each
of the two LO signals goes through automatic level control loops to control
the power at the LO port of each mixer.

E6401A

® 20-1000 MHz input

® Block downconverter input (Block downconv Input), 250 to 900 MHz
® st LO input, approximately 1223.4 to 2221.4 MHz

¢ 2nd LO input, approximately 1200 MHz

L J

21.4 MHz IF output with +10 dB of gain

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-5

Theory of Operation
E6402A Local Oscillator Operation

Functions

Description

E6402A Local Oscillator Operation

® Synthesize 1st LO and 2nd LO
® Filtering

® QOvenized reference

® O distribution

The E6402A local oscillator module provides the LO signals needed by the
E6401A 20-1000 MHz downconverter and the E6403A 1000-3000 MHz
block downconverter. The LOs are phase-locked to the 10 MHz reference.
The E6402A module also provides reference distribution circuitry and a
built-in oven-controlled crystal oscillator (OCXO).

2nd Local Oscillator

Synthesis starts with a narrowband voltage-controlled oscillator (VCO)
tuned over a frequency range of 1200 MHz +/-5 MHz. The VCO signal is
buffered and sent to one of two output signal paths. One path goes to the 2nd
LO Output port: its signal drives the E6401A. The other path goes to the BD
LO Output port: its signal drives the E6403A. The only difference between
the 2nd LO and BD LO output signals is the power level.

10 MHz Reference

An internal 10 MHz OCXO is available as the frequency reference for the
E6402A. This oscillator is only powered up when it is providing the 10 MHz
reference (internal reference mode) for the LO module. Selection of the
internal versus external reference is achieved using the
hpe650x_selectTunerl0MHzReference command. When the internal
oscillator is active, the external reference path is disabled and all the
reference signals of the module will come from the internal OCXO. The
oscillator is guaranteed to meet specified frequency accuracy only after it
has been selected and allowed at least thirty minutes to stabilize. The output
frequency of the OCXO is controlled by a digital-to-analog converter
(DAC). The value for this DAC is generated at the factory and stored in the
module’s EEPROM. This EEPROM is read by the E6404A IF processor and
automatically sent to the LO DAC to set the OCXO frequency.

4-6 E6501A/E6502A/E6503A VX! Receiver User's Guide

E6402A Option 002
Module

Theory of Operation
E6402A Local Oscillator Operation

The external reference input goes through a limiter and is buffered. Then the
reference, either external or internal, is split into paths leading to the:

® Ref TTL Out port used to lock the VXI backplane 10 MHz signal to the
system reference

® Ref Out port with an attenuated version of the 10 MHz reference at
approximately 0 dBm

The 3rd LO output is created by tripler circuitry, which takes the 10 MHz
reference signal through a series of amplifiers and bandpass filters, and
yields a 30 MHz fundamental signal with very low subharmonics.

If either of the LOs is in an unlocked state, an indicator light on the E6402A
front panel will illuminate.

First Local Oscillator

The 1st LO provides a synthesized leveled signal from
1223.4 t0 2221.4 MHz (settable to 1 Hz), nonvolatile storage (EEPROM) of
calibration data, and a 10 MHz output at 0 dBm.

The VCO, labeled VCO1, produces a signal in the range of

1223.4/2 to 1110.7 MHz. Bias of the VCO, controlled by a DAC, is aligned
at the factory. Its value is stored in the EEPROM. This value is read from the
EEPROM by the E6404A IF processor and set automatically. The VCO is
temperature compensated.

The VCO signal is buffered and then switched to one of three bands. Each
band has an amplifier, frequency doubler, bandpass filters, and three-to-one
band switches. The first band ranges from approximately

1200 to 1350 MHz. The bandpass filters and amplifier in this band are used
to filter out the fundamental VCO signal and submultiples of the desired
signals. The amplifier helps maintain a low noise floor. The 2nd band ranges
from approximately 1350 to 1675 MHz; it also needs filtering of the
fundamental and submultiples of the desired signal. In addition, the
bandpass filter must attenuate the noise at 1221.4 MHz (the Ist IF frequency
ofthe E6401A 20 to 1000 MHz downconverter). The third band ranges from
approximately 1675 to 2300 MHz; its filtering characteristics are similar to
those of the second band.

After the three-to-one bandswitch, the signal is amplified and passed
through an automatic leveling control (ALC) modulator. The signal then
passes through a directional coupler and a splitter. This output leveling
circuit compensates for changes in the output power versus frequency and
temperature.

The E6402A Option 002 offers dual LO output signals for two
20-1000 MHz downconverter modules and two 1000-3000 MHz block
downconverter modules.

E6501A/E6502A/E6503A VXI Receiver User’s Guide 4-7

Inputs and Outputs

Theory of Operation
E6402A Local Oscillator Operation

E6402A

® External reference input (Ext Ref In), 10 MHz
® Reference TTL output (Ref TTL Out)

® Reference output (Ref Out), 10 MHz

[J

Block downconverter LO output (BD LO Output), approximately
1200 MHz

1st LO output, approximately 1223.4 to 2221.4 MHz

2nd LO output, approximately 1200 MHz

3rd LO output, 30 MHz

E6402A Option 002

® External reference input (Ext Ref'In), 10 MHz
¢ Reference TTL output (Ref TTL Out)

® Reference output (Ref Out), 10 MHz

L]

Block downconverter LO output (BD LO Output), approximately
1200 MHz (dual outputs)

1st LO output, approximately 1223.4 to 2221.4 MHz (dual outputs)
2nd LO output, approximately 1200 MHz (dual outputs)

3rd LO output, 30 MHz

4-8 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Theory of Operation
E6403A 1000 to 3000 MHz Block Downconverter Operation

Functions

Description

E6403A 1000 to 3000 MHz Block Downconverter
Operation

Attenuation
Preselection
Preamplification
Downconversion
Image filtering
Gain control

The E6403A 10003000 MHz block downconverter module is a frequency
extension module for the receiver. It converts input signals in the range of
1000 to 3000 MHz down to the range of 250 to 900 MHz. This puts the
signals within the tuning range of the E6401 A downconverter module.

The 20-3000 MHz input path goes through a solid-state input switch. When
the receiver is tuned to a signal below 1000 MHz, the switch routes the input
signal to the 20—1000 MHz Input port of the E6401A downconverter. When
the receiver is tuned to an input signal above 1000 MHz, the switch routes
the signal to the E6403A block downconverter (BD) path.

After the input switch in the block downconverter path, there is a
programmable solid-state attenuator. The attenuator can be set to 0, 10, 20,
or 30 dB of attenuation. The attenuator improves the dynamic range of the
receiver when large signals are present at the input. Without attenuation,
large signals can overload the receiver and cause spurious responses.

After the attenuator, the signal is routed through a bank of four preselector
filters (preselector bands 11 through 14), a preamplifier, and a second,
identical bank of preselector filters. These filters not only provide
preselection, but image rejection for the mixer, and they prevent leakage of
the LO signal from the mixer out the RF input connector. Two banks of
filters are used to provide the isolation necessary to achieve good image
rejection and LO emissions. The preamplifier compensates for loss in the
preselectors, switches, and mixer, achieving good sensitivity.

The 2nd LO signal, provided by the E6402A module, is routed to the
E6403A module’s BD LO input port. The E6403A manipulates the 2nd LO
input signal of approximately 1200 MHz, generating an LO frequency of
1.25 times (LOyq,,) or 1.75 times (LOyi,p) the 2nd LO. The value of the LO
frequency depends on the frequency of the input signal as shown in Table
4-2.

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-9

Table 4-2

Inputs and Outputs

Theory of Operation
E6403A 1000 to 3000 MHz Block Downconverter Operation

Frequency Translations

Tuned E6403A Block E6401A Block
Frequency Generated Downconverter Downconv Input
(MHz) LO Frequency Output Frequency Filter
(Approximate) (MHz)
(MHz)
1000-1250 1500 (LOo) 500-250 BP
1250-1500 2100 (LOpign 850-600 HP
1500-1800 600-300 BP
1800-2100 1500 (LOoy) 300-600 " BP
21002400 600-900 HP
2400-2700 2100 (LOpign 300-600 ' BP
2700-3000 600-900 ' HP

Boldface numbers indicate preselector range
BP = bandpass, HP =high-pass

1. A reversed frequency spectrum exists at the block downconverter output and the
21.4 MHz output for these ranges.

After the second bank of filters, the input signal is downconverted in the
mixer, using the E6403A generated LO frequency, to produce the [F output.

The IF output from the mixer is amplified and filtered to remove the image
frequencies and the LO signal from the output of the mixer. The IF output
goes through a programmable solid-state attenuator which corrects for the
frequency response of the block downconverter. The IF output is then
referred to as the block downconverter output. The attenuator settings are
calibrated at the factory and stored in the module’s EEPROM.

¢ Block downconverter LO input (BD LO Input), approximately
1200 MHz

® 20-3000 MHz input

¢ Block downconverter output (Block Downconv Output),
250 to 900 MHz

¢ 20-1000 MHz output

4-10 E6501A/E6502A/E6503A VXI Receiver User's Guide

Theory of Operation
E6404A IF Processor Operation

Functions

Description

E6404A IF Processor Operation

[F analog filtering

Automatic gain control
Analog-to-digital conversion

Digital downconversion and filtering
Digital signal processing

VXI interfacing

The E6404A IF processor (IFP) module performs the final intermediate
frequency (IF) signal processing on the downconverted RF signal from the
tuner. Two separate channels allow independent processing of up to two IF
signals. For each channel, the analog 21.4 MHz IF signal is first bandwidth
limited with selectable 8 MHz, 700 kHz, or 30 kHz roofing filters. It is then
amplified and sent to a 28.53 MSamples/sec analog to digital converter
(ADC) and digitized. An automatic gain control (AGC) system optimizes
the dynamic range of the ADC by maximizing the analog input signal to the
converter. In manual gain mode, the gain can be set in 2 dB steps from

—12 dBm to 48 dBm. Signals within the digitized bandwidth (set by the
selected roofing filter) can then be converted to baseband by means of
hardware digital downconverters (DDC) which perform complex mixing
and digital filtering. Depending on the module option, multiple signals can
be simultaneously downconverted, one for each DDC installed. The I and Q
data streams from the downconverters are then sent to programmable digital
signal processing (DSP) chips (up to two, depending on the option), where
the final signal processing is performed (demodulation, FFTs, etc.). In the
case of demodulation, data from the digital signal processor (DSP) is
converted to analog and sent to the front panel audio connector. Other DSP
data, as well as commands, are sent to or from a host computer over the VXI
bus or can be captured from the front-panel link port connectors.

Mezzanine Board Description

The mezzanine board contains hardware for digital signal processing of the
input IF signal. The following functions are performed on the mezzanine
board: general digital signal processing, digital filtering, digital
downconversion, digital demodulation, and FFT processing. The devices
that perform these functions are the DSP and the DDC.

The IF signal is converted to digital form before it reaches the mezzanine
board. The digital samples are sent to the DDCs and to two FIFO devices
simultaneously. This allows the DSP to switch between the ADC output
sample data and the DDC output sample data. The FIFOs act as synchronous
buffers between the sample data coming from the ADCs and the DSP. By

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-11

Theory of Operation
E6404A IF Processor Operation

processing ADC samples directly, the DSP can perform batch mode
processing on signals with up to 8 MHz of bandwidth. The actual bandwidth
will be determined by the IF analog input filter bandwidth. The possible
bandwidths are 8 MHz, 700 kHz, and 30 kHz. The alternative to processing
ADC samples directly is to process the sample data in the DDCs.

The DDC devices perform digital (filtering) downconversion and
decimation of the ADC sample data. Thus, the wide band input data is
converted to narrow band data (centered at DC). The first step of this process
is to mix the samples with a signal from a numerically controlled oscillator.
The DDC clock is twice the sample rate (57.066 MHz). The mixer output is
then low-pass filtered. The low-pass filter is in fact a quadrature filter so the
filter has in-phase and quadrature (1/Q) outputs. The output bandwidth
determines the decimation rate and is programmable. The DDC output data
is sent through a formatter and then to a serial port where it is sent to the
DSP.

The DSP runs at 28.5333 MHz (ADC sample rate). For this reason, no
processing can be done on “full span™ data (data coming from the FIFO
devices) in real-time. This data is processed in batch mode using SRAM
buffers internal to the DSP. Alternatively, the DSP can process DDC output
data in either real time or batch mode as the situation requires. This is
because the DDC has decimated (reduced the sample rate) the input data.
This decimation reduces the data stream thus providing the DSP with time to
process data rather than having to continuously retrieve data from the data
source. Within the DSP the data is processed in a variety of ways. The data
is filtered, decimated, demodulated, and many other generic DSP algorithms
or tasks are performed.

Since real-time demodulation is available, an output path for low bandwidth
signals has been provided in the form of audio frequency output DACs. Ten
DACs are available, though a single mezzanine can only have five DDCs.
Therefore, if the receiver has two mezzanines, up to ten DDCs can be
installed so that the demodulated data from the two mezzanines can be
output on a single cable. [n addition to providing analog outputs, full rate
digital data and digital I/QQ data may be retrieved from a mezzanine board.

Digital data, in batch form, is available from a mezzanine via the VXI
backplane. Low bandwidth real-time data may also be available on the VXI
backplane by restricting backplane traffic to a minimum. High bandwidth
data may be retrieved via the front-panel link ports. Two DSP link ports are
available and their combined bandwidth is sufficient to deliver “full span”
raw ADC data in real time (8 MHz bandwidth) to an external DSP or other
link port compatible device.

The final function of the mezzanine board is to be an embedded controller.
The E6404A IF processor is digitally controlled. Input bandwidth, input gain,
and gain correction are a few of the IF circuits that are digitally controlled.
For this reason, the DSP firmware incorporates embedded control software as
well as DSP software. All DSP firmware is stored in on-board flash memory.

4-12 E6501A/E6502A/E6503A VXI Receiver User's Guide

Theory of Operation
E6404A IF Processor Operation

Overview of Automatic Gain Control (AGC)

The receiver does not use the traditional AGC that analog receivers employ.
Instead, autoranging and dynamic range optimization are used in the IF
processor to maintain the optimum level to the ADC and to the DDCs,
thereby optimizing dynamic range.

Gain is used to raise the signal to the detector’s measurement range. Without
AGC, the detector may be overloaded, or sensitivity may be insufficient to
measure low-level signals. The E650XA employs autoranging, which
functions similar to AGC in an analog receiver, but it does not require as
much gain, since a wide dynamic range ADC is utilized rather than an
analog detector.

Autoranging Operation

Autoranging uses the analog gain in the IF processor to maintain an
optimum signal level at the input to the analog-to-digital converter (ADC) in
the main signal path. The autoranging routine uses a 6 bit ADC (separate
from the 12 bit ADC in the main signal path) and a log amplifier to measure
the voltage envelope of the signal within the analog bandwidth of the [F
processor. Custom logic then uses the code from the 6 bit ADC to
automatically set step attenuators in the main signal path, resulting in an
optimum signal level at the 12 bit ADC input. The relative gain range is
—12 dB to +48 dB, or 60 dB overall.

The gain switches rapidly (<1 us) and is adjustable in 2 dB increments;
consequently, every time the gain changes, a step change in signal amplitude
is seen at the output of the 12 bit ADC. Since for real-time operation it is
undesirable to pass these abrupt amplitude changes through the narrow
bandwidth digital filters in the DDCs, they are effectively removed by
scaling the data stream using a RAM look-up table (called the correction
RAM) located between the 12 bit ADC and the DDCs. This results ina 16
bit word that is passed to the DDCs. Changes in correction RAM scale
factors are precisely timed with the analog gain changes such that the net
gain change is transparent to the DDCs. In addition to removing the gain
changes, the correction RAM also corrects inaccuracies in the analog gains
using calibration data measured at the factory and stored in the IF processor.
This technique makes it possible to perform calibrated measurements
concurrently with real-time processing, such as measuring RSSI during
demodulation.

It should be noted that the largest signal within the bandwidth of the IF
analog filter (30 kHz, 700 kHz, or 8 MHz) will set the gain for the
bandwidth. For example, in search mode where the § MHz filter is used and
8 MHz FFTs are performed, one high-level signal in that 8 MHz will cause
the gain for the entire 8 MHz to be reduced, thereby exhibiting a higher
receiver noise floor than an adjacent 8 MHz band that only has low-level
signals. The adjacent band with low-level signals will have an AGC gain

E6501A/E6502A/E6503A VXI Recelver User's Guide 4-13

Note

Theory of Operation
E6404A IF Processor Operation

automatically set to 48 dB, or some other high value, thus reducing the noise
floor for that 8§ MHz band.

There is a 0 dB to 30 dB RF attenuator in the E6401A downconverter
module to help set the level of signals in the receiver. This RF attenuator is
NOT part of the autoranging algorithm. This attenuator can be programmed
using the driver software, but it is not automatically adjusted.

Autoranging Benefits

First, autoranging optimizes the level to the 12 bit ADC to minimize the
possibility of overload. Second, it effectively extends the dynamic range of
the ADC. Third, its benefits can be seen when doing signal searches.
Autoranging occurs for each 8 MHz spectrum. So, if there is a very large
signal in one 8 MHz spectrum, the autoranging will decrease the gain to
ensure the ADC is not overloaded, but the result is that the noise floor
increases (because there is less gain). Also, the other bands are not affected
by the low gain level set by the band having the very large signal. In other
words, if the other bands have low level signals, the gain can be set high by
the autoranging routine and consequently the noise level is lowered to allow
these signals to be seen.

Other digitizers have one gain setting that is locked down for a//bands, not
just the one with the high level signal. The benefit of the autoranging is that
it only decreases the gain in bands with high level signals, thereby leaving
the other bands with high gains (and more importantly low noise floors).

Autoranging Routine Attack and Decay Time

The autoranging can respond to signal level increases in about

1 ps. Thus, the attack time can be considered to be about | ps. The hold time
is 2.3 ms and the decay time will vary from approximately 9 stoa
maximum of 574 us, depending on the size of the signal amplitude drop. An
approximation would be about 10 ps for each dB of amplitude drop.

30 kHz and 700 kHz Analog Filters

When the receiver is tuned to a signal and the signal is being received
through a DDC centered at 21.4 MHz, the excellent rejection of the digital
filter in the DDC will suppress any adjacent channels present in the analog
passband of the IF processor. However, since the autoranging will set the
gain based on the sum of all signals present, a large signal (or several small
ones) inside the analog passband will cause the gain to be set lower than the
optimum for the signal of interest. By selecting the narrowest analog filter
which will accommodate the DDC bandwidth, the additional signals can be
suppressed, allowing the gain to be increased, thus improving sensitivity.
Note that it is still possible to use multiple DDCs with these narrower analog
filters, as long as their bandwidths fit inside the analog passband.

4-14 E6501A/E6502A/E6503A VXI Receiver User's Guide

Theory of Operation
E6404A IF Processor Operation

Processing Gain

Recall that the sampling rate is 28.533 MSamples/sec in the IF processor.
This centers the 21.4 MHz [F signal in the second Nyquist band between
14.267 MHz and 28.533 MHz (IF = 21.4 =% x 28.533). The Nyquist
bandwidth, then, is 1/2 of the sample rate, or around 14 MHz. The
characteristic signal-to-noise ratio (SNR) of the ADC used in the IF
processor sampled at 28.533 MS/Sec is 62 dB. If digital filtering and
decimation are performed using the DDC, the resulting bandwidth reduction
improves the SNR. This increase in SNR is called processing gain. For
example, a 15 kHz DDC bandwidth provides 10 log (14 MHz/ 15 kHz)
processing gain, or around 30 dB. Thus, the SNR in a 15 kHz bandwidth
would be 62 dB + 30 dB =92 dB. This is analogous to decreasing the
resolution bandwidth on a spectrum analyzer to get a lower noise floor.

Dynamic Range Optimization

Dynamic range optimization (DRO) is a feature in the IF processor that
works in conjunction with the autoranging gain to optimize the receiver’s
dynamic range. Autoranging maintains the optimum analog signal level at
the ADC, while DRO maintains the optimum digital signal level at the DDC
nput.

As previously mentioned, in order to avoid gain switching transients from
being sent through the digital filters in the DDCs, they are removed by
normalizing the gain in the correction RAM. As the analog gain increases,
the correction RAM effectively divides the 12 bit output from the ADC by
the gain. The output of the correction RAM (and the input to the DDCs) is
16 bits wide. So, as the ADC output is divided by larger and larger numbers,
the 12 ADC bits migrate further to the right in the 16 bit field. As the analog
gain continues to increase, eventually the low order bits begin to be
truncated as they are shifted beyond the 16 bit field, resulting in increased
quantization spurs. To avoid this situation, the DRO continuously monitors
the composite signal level in the analog passband by reading the 6 bit
autorange ADC and, when conditions allow, adds back some of the gain that
was removed by the correction RAM. The result is that the 12 bits from the
ADC are kept as far to the left in the 16 bit field as the peak composite signal
will allow, thus maximizing the input to the DDC.

Because rewriting the correction RAM momentarily disrupts the data flow,
it is done as infrequently as possible. A window comparator prevents the
DRO process from responding to small envelope variations and the DRO
attack and decay response times are adjustable by the user overa 500 us to 1
s range. DRO can also be disabled completely while allowing autoranging to
continue to run.

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-15

Theory of Operation
E6404A IF Processor Operation

Dynamic Range Optimization Attack and Decay Time

The attack and decay response times (Ta, Td) are programmable by the user
between 500 ps and 1 s. The DRO uses a window comparator to monitor the
peak composite signal in the analog passband. When the peak signal level
increases above the upper threshold of the window and remains there for a
time equal to Ta, the DRO will immediately re-optimize the correction
RAM. Once re-optimized, the window is moved up so that the new signal
level is roughly centered in the window. As long as the signal stays inside
the new window, no other changes will occur. To avoid responding to
momentary bursts in signal amplitude, Ta can be increased; however, it is
desirable to keep Ta short, since it is possible to overdrive the output of the
correction RAM during that time. When the peak signal level decreases
below the lower threshold of the window and remains there for a time equal
to Td, the DRO does not necessarily re-optimize immediately. The time it
takes depends on Td and the signal level change in dB. If P is the signal level
change in dB (P>=1), then the approximate time before re-optimization is

ceil (P/2)-1

Td * > 1/2'(:1 where ceil is the ceiling function, which equals the
k=0

next highest integer value of its argument. For example, suppose the power

change is 7 dB, then ceil(P/2) — 1 = ceil(7/2) — 1 =4 — 1 =3, and the time

before re-optimization would be Td* (1+1/2 +1/4 +1/8) = 1.875*Td.

Interrelationship Between Autoranging, DRO, Correction RAM,
and DSP

The overall gain in the IF processor can be divided into three components:
analog gain (autoranging), correction RAM gain (also part of autoranging),
and DSP gain (part of dynamic range optimization). Refer to these
components as Ga, Ge, and Gd, respectively. The equation that relates these
terms at any point in time is Ga+Gc+Gd=0. The values of Ga, Ge, and Gd
are continuously adjusted, depending on signal level and processing mode
(real-time versus batch mode), to obtain the best possible performance from
the hardware.

In general, autoranging deals with Ga and Ge, while dynamic range
optimization (DRO) deals with Ge and Gd. Ga is controlled by autorange
hardware and is always automatically adjusted to optimize the input signal to
the main ADC. It has a range of -12 dB to +48 dB. During real-time
processing (for example, demodulation), Ge is adjusted synchronously with,
and exactly opposite to, Ga, such that Ga+Gc equals a constant at any instant
of time. This removes unwanted transients from the signal before being sent
to the digital filters in the DDCs.

DRO, which has about 53 dB of range, is used to optimize the input level to
the DDCs when signal conditions allow it. DRO accomplishes this by
effectively restoring some of the gain that was removed in the correction

4-16 EB6501A/E6502A/E6503A VXI Receiver User’s Guide

Theory of Operation
E6404A IF Processor Operation

RAM by scaling and rewriting the correction RAM contents. To illustrate
how DRO works in conjunction with autoranging, assume an input signal
level whose peak amplitude never causes the analog gain to be less than

24 dB. In this situation, 24 < Ga < 48, -48 < G¢ < -24, and it is assumed that
Gd is zero. Also, assume that the maximum allowable receiver input signal
level (receiver full scale, F Srx) is defined such that the analog gain at that
level is zero (Ga=0). Thus, in this example, when the analog gain is at its
minimum of 24 dB, the input signal would be -24 dBFSrx. In this situation,
it is obvious that 24 dB of the available DDC dynamic range is wasted, since
the signal never exceeds -24 dB relative to the DDC’s full scale input. In
equation form, the signal at the DDC input is: -24 dBFSrx receiver input
+24 dB analog gain -24 dB correction RAM = -24 dBFSddc DDC input,
where dBFSrx and dBFSddc are dB relative to the receiver and DDC full
scale inputs respectively. To improve this, the input to the DDC is increased
by shifting 24 dB of attenuation from the correction RAM to the DSP
(Gat+Ge+Gd = 24-24+0 ==> 24+0-24). Notice that Ga+Ge+Gd = 0 is still
satisfied, but the equation for the DDC input now becomes -24 dBFSrx +
24 dB analog gain + 0 dB correction RAM = 0 dBFSddc, and the dynamic
range of the DDC is fully utilized. Notice also that the autoranging is still
free to change the analog and correction RAM gains, Ga and Ge, rapidly in
response to varying signal levels, as long as they stay within the bounds
stated above. If the signal level increases above -24 dBFSrx, however, the
DDC input will clip unless attenuation is shifted back into the correction
RAM from the DSP.

In summary, the DRO maximizes the DDC input by continually monitoring
the signal envelope and shifting gain back and forth between the correction
RAM and the DSP in response to amplitude changes. It responds rapidly to
increasing signals to avoid clipping and responds slowly to decreasing
signals to avoid following fast envelope changes. Unlike fast autoranging
which can change gains without generating signal transients through the
DDC, the DRO does generate transients, but they are usually only
perceptible if it changes gains too often. Its slow response to decreasing
signals and the use of a window comparator to avoid reacting to small
envelope fluctuations prevent it from reacting unnecessarily.

Note that fast autoranging is fully functional during this process and will
respond to fast envelope changes transparently.

Dynamic Range Optimization in Search Mode

Autoranging and DRO behave somewhat differently when non-realtime
(batch mode) processing is used. Search mode is an example of batch mode
processing, since each time the tuner moves to a different frequency, a data
record is collected for the FFT and the data stream is then ignored between
records. While the data stream is being ignored, there is ample time to
change gains. Therefore, there is no need to use the correction RAM gain to
remove the transients. So, in search mode, the correction RAM gain still

E6501A/E6502A/E6503A VX! Receiver User's Guide 4-17

FFT-Based
Measurements

Theory of Operation
E6404A IF Processor Operation

corrects for imperfections in the analog gain step sizes using the factory
calibration data, but does not remove the gain change by attenuating the
signal as it would do during autoranging (that is, Gc is always nominally

0 dB). Each time the frequency is changed, the fast autoranging is allowed to
set the analog gain and then the gain is locked down prior to the data
collection. The analog gain setting is then read by the DSP to determine the
scale factor it will apply to the data to compensate for the analog gain. Even
though there are differences in the way gain control operates during batch
mode processing, it is still referred to as autoranging, since the effect is the
same.

A thorough understanding of FFTs is necessary before making FFT-based
measurements with the E650XA. In addition to providing basic information
about FFTs, this section provides information specific to the

E650XA such as FFT resolution bandwidths and improved sensitivity using
FFTs.

FFT Background

The Fourier transform integral converts data from the time domain into the
frequency domain. However, this integral assumes the possibility of deriving
a mathematical description of the waveform to be transformed. But,
real-world signals are complex and defy description by a simple equation.
The Fast Fourier Transform (FFT) algorithm operates on sampled data, and
provides time-to-frequency domain transformations without the need to
derive the waveform equation.

The FFT is an implementation of the Discrete Time Fourier Transform, the
algorithm used for transforming data from the time domain to the frequency
domain. Before a receiver uses the FFT algorithm, it samples the input
signal with an analog-to-digital converter (the Nyquist sampling theorem
states that if samples are taken of twice the bandwidth, the signal can be
reconstructed exactly). This transforms the continuous (analog) signal into a
discrete (digital) signal.

Because the input signal is sampled, an exact representation of this signal is
not available in either the time domain or the frequency domain. However,
by spacing the samples closely, the receiver provides an excellent
approximation of the input signal.

FFT Properties

As with the swept-tuned receiver, the input to the E650XA is a continuous
analog voltage. Whatever the source of the input signal, the FFT algorithm
requires digital data. Therefore, the receiver must convert the analog voltage
into a digital representation. The first steps in building an FFT receiver are to
build a sampler and an analog-to-digital converter (ADC) in order to create
the digitized stream of samples that feed the FFT processor.

4-18 E6501A/E6502A/E6503A VXI Receiver User's Guide

Sampling

Fs: sampling frequency

ADC

At: time intervals = 1

equation

Stepped FFT
Measurements

mr,.rHTTHTTIh,Tﬂ“F” MMM

Theory of Operation
E6404A IF Processor Operation

The FFT algorithm works on sampled data in a special way. Rather than
acting on each data sample as it is converted by the ADC, the FFT waits
until a number of samples (N) have been taken and transforms the complete
batch of data. The sampled data representing the time-domain waveform is
typically called a time record of size-N samples.

But the FFT receiver cannot compute a valid frequency-domain result until
at least one time record is acquired. This is analogous to the initial settling
time in an analog receiver. After the initial time record is filled, the FFT
receiver is able to determine very rapid changes in the frequency domain. A
typical size for N might be 1024 samples in one time record.

FFT Process

Figure 4-1 shows a summary of how the E650XA implements the FFT in its
time and frequency transformation process.

Time Record Spectrum

A | No. Of Points Resolutionfandwidth
N: number of points RBW: resolution bandwidth
Tt total time (seconds) = Fs x shape factor
=Nx At

Fs

N
Full Span = 8 MHz
DDC Span
= DDC IF bandwidth (3dB)

Figure 4-1 Summary of the Basic FFT Process

The input signal is sampled at the frequency of Fs, which produces a time
data stream with At interval between samples. The time domain data batch
accumulates N samples before sending it to the DSP where an FFT will be
performed, and the length of the time record T equals N times at. After the
time data is transformed into a spectrum, the resolution bandwidth is
determined by the sampling frequency Fs, divided by the number of points
N, times the window shape factor (1.5 for Hanning window). DSPs are
optimized for performing FFTs very effectively.

The E650XA receivers use FFT technology to provide enhanced wideband
measurements. Technological advances in designing ADCs and digital
signal processors (DSPs) have been combined with FFT technology to
provide the same results as a swept-tuned receiver but with additional
capability and faster speed.

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-19

Windowing

Theory of Operation
E6404A IF Processor Operation

The E650XA receivers are capable of making FFT measurements with
excellent resolution at higher frequency ranges. This has been accomplished
by translating the highest frequencies to a lower band, then performing FFTs
on separate segments of the spectrum. These segments are displayed
contiguously (in search mode) so that the result appears as it would with a
swept-tuned receiver. Also, these receivers are capable of selecting spans
and resolution bandwidths that were previously unavailable in swept-tuned
receivers.

For narrow resolution bandwidths, the stepped technology in the

E650XA receivers is much faster than swept-tuned receivers. In a
swept-tuned receiver, time is required for the IF filters to settle on each input
signal. With stepped technology, time is still required for settling, but fewer
steps are required.

This section describes why windowing is needed in the FFT process,
describes window types and characteristics, and describes the relation to
resolution bandwidth filters.

Windowing is a time domain function that is applied to the time data batch
before it is transformed into a spectrum. Windows can be compared to the
impulse response of a resolution bandwidth filter. In the frequency domain,
the window determines the resolution bandwidth shape factor.

Purpose for Windowing

The FFT algorithm assumes that the signal is periodic in the time domain. If
a sample can be taken of a periodic signal, such as a sine wave, with an
integer number of cycles in the time domain data batch, then the assumption
can be met. However, it is impossible to sample a complete cycle of a signal
without knowing its frequency. In many cases, the signal is not periodic in
nature. Therefore, if the signal is sampled with some truncations, errors will
occur. These errors are called leakage. The purpose of windowing is to
minimize these errors and correct the spectrum.

Although windowing correction does not produce a perfect spectrum, it is
close enough to allow for accurate measurements to be performed.

Window Implementation

Windowing is implemented in the time domain. The time domain data batch,
before it is transformed into a spectrum, is modified by the selected
windowing function. The type of window must be selected by the user.
Selecting an incorrect window type will result in errors. Users must have an
understanding of the different window types and their characteristics.

4-20 EB6501A/E6502A/E6503A VXI Receiver User’s Guide

Table 4-3

FFT Resolution
Bandwidth Range
(Search Mode)

Theory of Operation
E6404A IF Processor Operation

Window Characteristics

There are three types of windows implemented in the E650XA receivers as
shown in Table 4-3.

Window Types and Characteristics

Parameter Uniform Hanning Flat Top
window bandwidth 1.0 1.5 3.8

factor

sHape factor N ’716:1 9.1:1”7 2,45:71”77
amplitude accuracy pobr good best

The window types are selected using the hpe650x_setFFTWindowType
command. Typically, the Uniform window is applied to “self-windowed”
signals, such as burst and transient signals. The Hanning window has good
frequency resolution but average amplitude accuracy. The Hanning window
is applied to random types of signals and is the default used in the

E650XA receivers. The Flat Top window has very good amplitude and
average frequency resolution, making it good for measuring spurs or
periodic signals.

Window as Resolution Bandwidth Filter

The E650XA receivers do not sweep resolution bandwidth filters across the
frequency range. Instead, they use the DSP algorithm to generate a bank of
parallel filters to compute spectrum components at the same time. The shape
of the filter is determined by what window type is used. Therefore, the
frequency line shape of the window is the resolution bandwidth filter shape.

FFT resolution bandwidths refer to the “resolution” bandwidths of the
spectral displays. For example, with the 8§ MHz wide FFT, the minimum
resolution bandwidth is 5 kHz, because the receiver utilizes the 8 MHz
antialias filter. The resolution bandwidth can be less than 5 kHz with DDC
filtering. An FFT is performed on the entire 8§ MHz wide spectrum
(converted to a spectral display in frequency domain) by the DSP. The

8 MHz analog antialias filter is used, but no DDC filtering is performed in
search mode. The resolution bandwidth is determined by the sample
frequency (28.533 MHz) divided by the FFT length. Also, the window shape
factor is needed to account for the Hanning windowing. For example,
28.533 MHz divided by 8192 points then multiplied by the Hanning window
shape factor of 1.5 is approximately 5 kHz. This is the minimum FFT
resolution bandwidth, since it uses the maximum number of FFT points.
Reducing the FFT length increases the resolution bandwidth.

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-21

FFT Resolution
Bandwidths <5 kHz
(Search Mode)

FFT Resolution
Bandwidths for DDC
IF Pan Windows

Improved Sensitivity
Using FFTs

Theory of Operation
E6404A IF Processor Operation

FFT resolution bandwidths less than 5 kHz can be selected from the entry
window on the search display of the virtual front panel. For FFT resolution
bandwidths less than 5 kHz, the DDC is stepped across the 8 MHz spectrum
to provide the resolution required. This process is transparent to the user.

Note that selecting FFT resolution bandwidths less than 5 kHz will affect the
overall speed of the operation. As in any receiver, the lower the resolution
bandwidth, the longer the sweep time.

The “span” of these windows is set by the DDC IF bandwidth (247 Hz to
462 kHz). The FFT resolution bandwidth of these displays is set by the FFT
length.

The RBW = (sample frequency divided by FFT length) x 1.5, where 1.5 is
the window resolution bandwidth factor; see Table 4-3.

Improved sensitivity using an FFT refers to increasing the processing gain.
If the 8 MHz search mode or § MHz stare mode is used, the DDC IF
bandwidths are bypassed. Therefore, the sensitivity is determined by the
FFT resolution bandwidth. If the FFT resolution bandwidth is 100 kHz, the
noise is determined by kTB in a 100 kHz bandwidth (plus the noise figure of
the system).

In the case of the IF pan mode, assume that the DDC I bandwidth is set to
10 kHz (which sets the span of the IF pan window), and an FFT resolution
bandwidth of 1 kHz is selected. Since 1 kHz is the effective resolution
bandwidth, it offers 10 log BW, or 10 dB lower noise floor than the 10 kHz
DDC IF bandwidth.

Search mode provides a low noise floor by using the FFT resolution
bandwidth and thus provides increased processing gain. Processing gain is
further improved when the FFT resolution bandwidth and the DDC IF
bandwidth ratio are considered (10 log the ratio of the two). Note that the
FFT processing gain only applies to the signal display and not the signal
demodulation process. The receiver sensitivity specification provides the
performance of how well the receiver can demodulate small signals in the
presence of noise.

4-22 E6501A/E6502A/E6503A VXI Receiver User's Guide

Inputs and Outputs

Theory of Operation
E6404A IF Processor Operation

Ch11F In

Channel 1 Link Ports
Channel 1 Audio/Trigger
Ch2IF In

Channel 2 Link Ports
Channel 2 Audio/Trigger
Ref'In

Ref Out

For a complete list of available options, refer to Table 1-1.

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-23

Theory of Operation
E6404A IF Processor Operation

E6404A IFP Architecture

Host

CH?2 CH2

16
IFIN ADC 7 N

CH1 CH1] 18
IFIN ADC ? W

Front Panel Front Panel
Audio Ports Link Ports Audio Ports Link Ports
(10) (2) (10) (2)
Mezzanine 1 Mezzanine 2
< <
a a
A A
SHARC SHARC
DSP <: DSP <:
|] S
L A A J 28 L A A / a8
' Q o2 | Q @5
23 29
53 53
N < N <
v = D =
DDCs = DDCs s o
[3Y) [qV]
o (o]
1 AV A AV
05_ Mez Bus ;‘_ Mez Bus
x to x to
3 16y Host Bus 5 16 Host Bus
AN AN
Link Port
32 ADC Data

ipfarch.cdr
26500-80006

7

Host Bus
to VXI <

Host Bus 32 Bit Address/Data

_>

Interface

Figure 4-2

IF Processor Architecture Diagram

4-24 E6501A/E6502A/E6503A VXI Receiver User's Guide

Theory of Operation

E6404A IF Processor Operation

90006-00599

1p2 yoopqds
|aued Juol4 Zza 18yi0
0} SHOd U 0} }od YU
H 0 0 eleq Ueyo Alepuodaesg
N
EIe()/SS0IpPY 1 ot -- shg oulUBZZoN vv 4sq [+ Sd
T
B OHYHS -14 O
o oot | | a
Aiddns 2 , JodiNoo| | 99 !
1amogd o v .A L -
& o g Q ¢ g e eeQ O/ [BLRS
uondo uonenIaY vd 6 g. s v)>Q¥o~5 _L1l__ ._n - ._n e
s NYHS sng zaly o e>-Ovale5 e>QvalE T T T N 1
@ Ak /s184Nn & 5 -
W AdN v J2] NU g. z g i oda "_ o4aa “_ jolale] “ jolale]
¥ \ Loem =1L - 1L -_— O—e
\ S .g - g
9 L
soeja|ul g\/ IO opny N0 olpny | q., M %
IXA 0}
sng 15oH
AN -
pieog -
asepalu) EjEQ UeYD Areullid pieog auluezzap |
e
ejeq ueyo Arewnd
- Bleq UeyD Alepucoss
uonenIgly
sng 1soH dwy Boq N
ueyo I18yio ¢ |0QU0D (518 9) joluo)
wolj ereQ (Wv4s) ZHIN 6665 B2 2 # abed dn-yooq |ebuey-ojny oay S 1SOH
k alqeL lojelausn) IIANIS_ oL |4 [e1x
dn-3o07] aey s|dwes %
uoljoallon iojelsuen Bunes lorenusiy [
kogwﬂwﬁoo uen B=10Tg] X
220 ebuey gp 5e=9) gp0e=0 Yy ap6=9 ZHY 0E=Ma
0} }S0H ony] TN ©
oay
<] ssseung [g N_Vl ~ \W\ W\ = e o
ZHW v'L2=24 =
sdejs gp 2 sdels ap 2 ZHA 004=Md gp =9
gp 0e-0 gp 0e-0
X ZHN ¥’ 12 = 40
— siowid dd 1Y
ZHW 8=M4
pieog 1SOH

weibeiq ¥o0|9 d41 YF0vy93

ion)

Figure 4-3 IF Processor Block Diagram (single channel, 1 mezzanine opt

EB6501A/E6502A/E6503A VXI Receiver User's Guide 4-25

E6404A IF Processor Operation

Theory of Operation

LADI4

_’mnos:ow_mmﬂmn_mNEmNNmEEmlxomowac _ll

4 r 1 i i . _

1 - Ly + I 1 ! I

I [I [[P! _

_ oy I [[0! _

| 1 1 [N | 1 ! |

I [Ly I i ! I

I N 1y eeqD | [0 ! I

I Lo . I _ i ! !

_ i _ _ _ | S P _

I 1y I I LT

i 1 _vooa_li_m ooo_|_m ooo_l_rooo_ul_oooo -, | sy —HARZ|

1 dsa 1) _ _ _ _ _] \ I 1 I | L# [pUUBRYD
1 1 1 L | vV Seg 41
1 Iy geq | | A | i ! soeuy |

[I i \ [o I

“ " ! 1 suwezzapy | ,,.. “ “ | “

I by I 4 I 1 ! I

| | 1 i | 1 1 |

! h ! i ! P! |

I I I y I 1 ! |

! | | S

) 1 I ! I I “ I

| ! it L Lspow | Lo _

] Iy _ _ _ _ _ | \ I p ! I

I I 1 Vo ! —~] !

I 1 |roaq mooo_|_m oooI_oooIooooTllr spon=>—H [[N P

| dsa I _ _ _ _] | | [i~ | O# [BUUBYD
| | [N 1 1] ! NI | Ell
I | T eedl | I I | bopuy |

! I hi I I Py I

! 1 h o# euezzapy | _ | |

i I “ 1 :] “ 1 “ i

| | 1 i

i 1esqns| “ tesang | | lesansg | | esgng) ! amn:m“

| SpuetIWon| | spuewuwog 1y SPUBLIWOD | {spuewwog| | spuewwoD |

] g dnoin| | pdnoig 1) ¢ dnoug |] 2 dnoin)| | 1 dnoin
e d I e e e ——— 1 L————a L.

4-26 E6501A/E6502A/E6503A VXI Receiver User's Guide

4 Mezzanine Data Select Mode 1

Figure 4-

Theory of Operation

E6404A IF Processor Operation

Zmold

_ wvoEuow_owmﬂmowN_cmNNmEmelxomwgl

I I 1 I] “ I
] Ly 4 1 [|
1 b 1 | ro |
1 hy 1 | - 1
1 1 1 ! I |
| 1y 1] l “ I
| I eeq D “ " [|
| L | 1 |
_ i _ _ _ | S - _
I 1 I I VO]
[1 _von_o_AA_m ooo_.l_m oooIroooIo 0aa —e—Z 3P0 S |
1 dsa (!l _ — _ _ _ | P !) b 1BULRYD
i 1) I H | 1 “ sieliy | 4l
| “ 1 eleq | i i _ | 1 Bojeuy |
| I 1 . i |
2 apol |
" “ “ L4 suluezZZap _ i “ " I "
| I i / | ! |
| Ly 1 \ 1 1 l |
I I I / I 1! i
| Iy | ! | 1! i
! Iy I H I P! "
1 “ I I i I I “ I
1 ! |
" g L A S
_ T T T T 1|
I 1y 1 i I P! ~ !
] I _v ooo_Al_m oooIN oda =ad | R~ L ~= [
| gsa |1 _ _ T |] I “ | O# [PUUBYD
1] “ 1 | i | | s18)j14] 4l
I |] eeql | 1 1! Gopuy |
I [Iy I I ! I
! 1 h 0# BuIueZZoy ! ! 1 “ |
| | Ll . L | 1 i
I | I I [P! I
1 wsangl | 19sqns | | 1984ns | | lesqng) | 1950ns
| SPUBLIWOD| | Spuewwog (] spuBwwoy | | spuewiwogy | SpuEWWoY |
| ¢ dnoin)| | pdnoig | ¢ dnoun | o 2 dnoun) ! L dnoin |
e U e e e e e ———— a1 b e ea

E6501A/E6502A/E6503A VX Receiver User's Guide 4-27

Figure 4-5 Mezzanine Data Select Mode 2

Theory of Operation

E6404A IF Processor Operation

ol

P

\ muo\eow_mmﬂmomNEmNNw_\,:mm|xomowazj

..
| 1 1! 1
s |
| t ! | 1
| h ! |
_ 1 (P _
| V1 gepopy; ' |
| I i 1 |
I Iy i eeq o I “ I
| Hy i | |
1
| O O BN
1
i 11 |v ool oaal{z saal—{+ caal—o oaa T N
oQav 1] T s euu
1 € sOva dsa [_ _ _ _ _ | I | | L#IPUUBLD
i 1701, W] 1 | LSRR el
] P 1 eeg| | I I Bopuy |
1 1 | “ 1 1 I 1 “ I
| | 1 | } I
1 1 “ Ly L# SUILBZZIN | I P! "
I ro ¥ I I] " 1
| 1 | + : i | | |
H |
“ P ¥ 4 _ L | “
_ oy I PO I Y [¢! _
1 “ 1 “ I i eeq o " ¢ SPOW _ \ “ |
1 1 t T . | |
H i 1
“ ST “ “ _ i _ _ _ _ " | " “ | “
_ 11 [» oaal<ils saalz oaal—{+ oaal—{o saaft—e—g apop s LI et
I oav [l [N
! dsd “ 1 _ _ _ _ _ 1 | b | O# [ouueyo
1 701 1 | I | sial 1 dl
I I “ T eeq| | [1! mo_m_@ I
| Lo h [! Lo _
“ “ “ I “ O# BUIUBZZB " _ “ 1 _
I [I I I . I
| esqns| — Psqns I 1 losqng |] «mmn:m— | uwmﬂﬂ_m_
ISPUBWWOD] | spuewwod | | SPUBLIWOY | Ispuewiwogj | spuewwos
1 s dnoig| | pdnoin 1| g dnoig | 1 Z dnoun) ! 1 dnoun |
e ed e I e e e e 4 L L.

Figure 4-6 Mezzanine Data Select Mode 3

4-28 E6501A/E6502A/E6503A VXI Receiver User's Guide

Theory of Operation

E6404A IF Processor Operation

[ZIE]

[=———— [—

mvo_\éom_wmﬂmomNEmNNm_\,:mm\xommma;T

sova

18s9nsg|
| SpUBWWOD|
| gdnoug]

[S —

1 |
- +
[N} |
1] 1
[N} |
1] 1
I |
H |
1 |
1y |
Ly
dsa [h1 1
I 1 i
I [eleqd | |
| | |
| “_ L# BuluEZZOY _
_ 1 I
| [L
I h I
I Ly |
| T]
I I
i
) I 1
i - |
. 1 1
h |
)
dsa (' _
) 1) |
| [N eled| 1
1 |
I 1 I
1 11 O# BuUBZZBY |
“ W] I
| 1esqans |) 188qns |
| spuewwod || spuewwo) |
i pdnoig 1} ¢ dnoig |
IIIIIII S S |

! _
i |
| |
1 1
| 1
i |
1 |
| |
! “
| DN
| °9v |, % " L# [pUURYD
! 1ol oseng 4l
| I | Bopeuy |
1 1 | |
| | | |
| | | |
1]]
| 1 | |
| i “ 1
I 1 | |
| 1 | 1
1] 0 |
1 1 | |
| 1 | |
| | |
_ =
1| 29¥ | 1 % “ o# [uuBYyD
| 1 “ s19]|14 | 4l
! I | Boreuy |
i 1 1
i 1 1 f
1 1 1 |
1] | |
I iesang; | jesang
Ispuewwog| | spuewwog
I zdnag] | pdnoip
| N | | I

Figure 4-7 Mezzanine Data Select Mode 4

E6501A/E6502A/E6503A VXI Receiver User's Guide 4-29

Note

Specifications

This chapter contains specifications, characteristics, and typical performance
parameters for the E6501A, E6502A, and E6503A VXI receivers.

Values given are specifications unless labeled as characteristic or typical.

Specifications are not available at the individual E6400-Series VXI module
level.

Definition of Terms

Specifications describe warranted performance over the temperature range
of 0 °C to 55 °C after a 30-minute warmup from ambient conditions.

Characteristics describe product performance for parameters that are not
subject to variation, not measurable, verifiable through functional pass or
fail tests, or are not routinely measured. Characteristic performance
parameters are non-warranted.

Typical refers to test data at the 50th percentile (averaged over the
frequency range) and 25 °C. Typical indicates non-warranted performance
parameters.

Specifications are valid only if the modules are housed in an Agilent
Technologies VXI mainframe. (E1421B and E1401B mainframes are
recommended.) Performance is not specified below 20 MHz.

E6501A/E6502A/E6503A VXI Receiver User’'s Guide 5-1

Specifications
Frequency-Related Specifications

Frequency-Related Specifications

Frequency Range 20 MHz' to 1000 MHz

20 MHz' to 3000 MHz (Option 003)
Tuning Resolution 1Hz
Synthesizer Tuning Speed 1 ms (10 kHz settling)
(Characteristic) 2 ms (1 kHz settling)

4 ms (100 Hz settling)
[Data derived from register-based programming]

Overall Receiver Sweep Speed 2.8 GHz/s in 10.4 kHz resolution bandwidth

(Characteristic) (maximum speed using 4k FFTs of successive
8 MHz spans over the 20 MHz to 1000 MHz
frequency range; does not account for computer
overhead time)

Tuning Accuracy
(center frequency x reference accuracy)

Internal OCXO Reference Accuracy 1% 108yr 1

External Reference Input Requires 10 MHz reference signal with

level 0 dBm £3 dB

1. The software driver supports tuning the receiver down to 2 MHz. However, specifications, typicals, and
characteristics do not apply below 20 MHz.

5-2 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications
Frequency-Related Specifications

RF Preselection

Preselector

Filter Frequency

Band Range

(Characteristic)
i 7 (40 MHz LPF) o
2 740 tb 60 MHz)
37A 60 to 84 MHz
4777 84 to 118 MHz
5 11810 170 Mer -
6 170 to 230 MHz -
} 230 to 350 MHz a
8 350 to 450v MHz
g 450 to 750 MHz
;F 750 to 1000 MHz 7
11 ”1000 to 1250 MHz
12 1250 to 1800 MHz
173 1800 to 2400 MHz
14 2400t0 3000 MHz

E6501A/E6502A/E6503A VXI Receiver User’s Guide 5-3

Specifications
Amplitude-Related Specifications

Amplitude-Related Specifications

Input Parameters

50 ohms

RF Input Impedance
(Characteristic)
RF Input Connector SMA
Input VSWR 21
(Characteristic)
Maximum Input without Damage
(Characteristic)
Average Continuous RF Power +20 dBm
DC Voltage 20 volts

Maximum recommended operating level at RF input:

RF Input Attenuation

(Characteristic)

—20 dBm with 0 dB RF
attenuation

(+10 dBm with 30 dB
attenuation)

0to 30 dBin 10 dB steps

Detection Modes

DSP-based Demodulation

Simultaneous Demods

up to 10

AM, LSB, USB, ISB, FM, CW, PM

(optional configuration; see Table

5-3 for bandwidth requirements)

5-4 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications
Amplitude-Related Specifications

Dynamic Range Parameters

Noise Figure 10 dB (20 MHz to 1 GHz)'
(Typical) 14 dB (1 GHz to 3 GHz)
Sensitivity: (12 dB SINAD; 1 Vp-p audio See Table 5-1

output; modulation=1 kHz; analog filter =
30 kHz BW, FM de-emphasis on)

(Typical)

Intermodulation: Second Order

(Typical)

SOl +67 dBm
(Referenced to the RF input)

(with 0 dB input attenuation)

(0 dB RF attenuation)

Intermodulation: Third Order

(Typical)

TOI +15 dBm (20 MHz spacing)
(referenced to the RF input)
0 dB RF attenuation

Narrowband Intermodulation Distortion for 2 -63 dBc (-60 dBc for Option 001)
signals at -20 dBm and 125 kHz spacing using (referenced to the RF input)

th(? 8 MHz ‘analog filter 0 dB RF attenuation

(with 0 dB input attenuation)

Image Rejection 95 dB
IF Rejection 85dB
Phase Noise @ 20 kHz Offset -100 dBc/Hz

(Characteristic)

Internally Generated Spurious (Typical) < -100 dBm, equivalent input

-110 dBm
(in 20 to 1000 MHz RF band)
—100 dBm

(in 1000 to 3000 MHz RF band)

LO Emissions

Blocking < 2dB?
(Characteristic)

Reciprocal Mixing <3dB®
(Characteristic)

1. Add 1 dB when using E6403A 20 to 3000 MHz input.
2. Attenuation of —100 dBm desired signal by unwanted -5 dBm signal at 250 kHz
offset in 25 kHz DDC BW and 30 kHz analog BW.

3. S+N/N degradation of desired signal by unwanted signal 350 kHz offset and
70 dB higher in 20 kHz DDC BW and 30 kHz analog BW at RF-tuned frequency
of 85 MHz.

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-5

Table 5-1

Specifications
Amplitude-Related Specifications

Typical Values

Frequency AM Sensiti_vity FM Sensiti_vity

(DDC BW =5 kHz; 50% AM) (DDC BW = 25 kHz; FM dev = 5 kHz)
500 MHz -107 dBm -112 dBm
1125MHz 105dBm ~110dBm *
EOOMHZ li05 dBm) -110 dBm
2000 MHz -105 dBm —i 17(7) dBm
2700 MHz -103 dBm -108 dBm N -

5-6 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Specifications

IF (Intermediate Frequency) Processing

IF (Intermediate Frequency) Processing

IF Section: Analog Signal
Conditioning and ADC

Analog IF Input Filter Bandwidths
(minimum)
(Characteristic)

Analog Gain Control

Input Range Settings
(Characteristic)

Autoranging Gain Response Time
(Characteristic)

Overall Gain Control Range
(Characteristic)

Dual Input IF Channel Isolation
(Characteristic)

ADC Sampling Rate
(Characteristic)

ADC Output Data Rates

dBm also provided)

28.5333 MSa/s ?

8 MHz, 700 kHz, and 30 kHz,

(Filters centered at 21.4 MHz. The
8 MHZz filter is an anti-alias filter.
The 700 kHz and 30 kHz filters are
adjacent channel rejection filters.)

manual and autoranging

-48 dBm to 0 dBm in 2 dB steps
(overrange from +2 dBm to +12

<1us
attack: <1 us
decay: <2.9ms

150 dB
(includes RF attenuation, ADC

dynamic range, and autoranging)’

<-120 dBm.

(For a signal at full scale at the
ADC on channel 1, channel 2 at
maximum gain will have an
equivalent input signal level <-120
dBm, and vice versa. Applies to
E6502A and E6503A dual channel
receivers only.)

Full rate ADC at 28.533 MSa/s
using 2 link ports

(16 bits wide; 57.0666 MBytes/sec
data rate using 2 link ports. See IF
Section for link port information.
Spectral information is inverted for
bands 11 and 12 for full rate ADC
output.)

1. Actual adjustable range using the software driver is 90 dB (30 dB RF

attenuation and 60 dB analog IF gain). Remaining 60 dB range is
accomplished with the ADC dynamic range
(S/N of > 62 dB at Nyquist sampling rate of 28.533 MSa/s).

2. Sample rate is calculated by multiplying 21.4 MHz by 4/3.

E6501A/E6502A/E6503A VXI Receiver User’'s Guide 5-7

Specifications
IF (Intermediate Frequency) Processing

IF Section: IF Processor Dynamic Range

Parameters

Harmonic Distortion' 22 ~75 dBc or <-140 dBm*
(Characteristic)

Spurious Responses'?5 -110 dBc or <140 dBm*

(Characteristic)

Signal-to-Noise Ratio®” 62 dB
(Characteristic)

Internally Generated Spurious <-140 dBm*
Responses' 89

(Characteristic)

1. 8 MHz bandwidth (undecimated ADC data).

2. Input signal equal to input range setting (see “Input Range Settings” on the
previous page).

3. includes aliased distortion components.

. Referred to E6404A input.

. Includes non-harmonically-related spurious, clock spurious, sidebands, etc.
. 14.266 MHz Nyquist bandwidth.

. For input range setting of —~10 dBm and signal at ADC clipping level.

. E6404A input terminated in 50Q.

. With input range setting of —-48 dBm.

© o0 ~NO OB

5-8 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications

IF (Intermediate Frequency) Processing

IF Section: Digital (General)

Number of Digital Downconverters
(DDC)

Standard E6501A receiver: 1
Standard E6502A receiver: 2
(1 per mezzanine)

Standard E6503A receiver: 2
(on mezzanine #1)
Optionally: 5 per mezzanine

(10 total per IF Processor module with two
mezzanines; when DSP on mezzanine #1
used for search, only the DDCs on
mezzanine #2 are usable for digital I/Q
output or demodulation)

DDC Tuning Range
(Characteristic)

8 MHz, max (limited to analog IF input
filter)

centered at 21.4 MHz

DDC Resolution
(Characteristic)

Response Time
(Characteristic)

Digital IF Bandwidths
(Characteristics)

Digital Bandwidth Shape Factor
(Characteristic)

< 1.5:1 (102 dB to 3 dB BW ratio)

16 bits

DDC full scale automatically adjusted over
54 dB range using dynamic range
optimization.

Variable, adjustable in 500 ps steps

attack: 500 psto 1s
decay: 500 psto1s

36 different filters with following 3 dB BWs:
247 Hz, 493 Hz, 740 Hz, 1 kHz, 2.4 kHz,
3.3 kHz, 5 kHz, 6.3 kHz, 10 kHz, 12 kHz,
15 kHz, 20 kHz, 25 kHz, 30 kHz, 34 kHz,
44 kHz, 54 kHz, 62 kHz, 74 kHz, 83 kHz,
93 kHz, 109 kHz, 119 kHz, 138 kHz,

154 kHz, 167 kHz, 187 kHz, 201 kHz,
218 kHz, 238 kHz, 262 kHz, 291 kHz,
327 kHz, 374 kHz, 436 kHz, 462 kHz.

(all 5 DDCs per mezzanine are set to the
same BW)

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-9

Specifications

IF (Intermediate Frequency) Processing

Digital Output Interface

Analog devices 2106X DSP

(Sharc) link ports (2 link ports per
mezzanine)

Link Port Connector Type

AMP 1-104074-0 connector on E6404A
front panel

(mating connector: AMP 487550-5
housing and contacts)

Number of Digital 1/Q Outputs

1 per DDC (up to 10 DDCs available
optionally) (The number of DDCs depends
on model and option configuration.)

Bandwidth of Digital I/Q Qutputs

From 247 Hz to 462 kHz

(The BW depends on the number of
DDCs simultaneously accessed. Refer to
Table 5-2)

DDC Decimated Sample Rate
(samples/second)

(Characteristic)

1.8181 x DDC BW

4 MByte Data RAM

Optional (4 MBytes per mezzanine; 2
mezzanines total); used for data
buffering or delay memory applications
(not available for programming)

IF Section: Digital I/Q Qutputs

Number of Simultaneous Digital I/Q

Outputs
per Mezzanine

(Characteristic)

Output Bandwidth

Output Interface

Up to 5 (See Table 5-2)"

(up to 10 using optional
second mezzanine)

Set by DDC

Sharc link ports

Link Port Output Data Rate (bytes/second) 1.8181 x4 x DDC BW I/Q

(Characteristic)

complex data is 16 bits wide
(16 bits for | and 16 bits for Q;
4 bytes per sample)

(see “Digital IF Bandwidths”
for DDC BW range)

1. The standard receiver includes one or two DDCs depending on the specific
model number. Options are required for two or five DDCs per mezzanine. The
E6501A and 6503A require an option for a second mezzanine.

5-10 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications
IF (Intermediate Frequency) Processing

Table 5-2 Number of Simultaneous 1/Q Output

DDC Bandwidth .247 to 34 kHz 44to54kHz 62to83 kHz 93to 187 kHz 201 to 462 kHz

Number of 5 4 3 2 1
Simultaneous I/Q
Outputs per Mezzanine

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-11

Specifications

IF (Intermediate Frequency) Processing

IF Section: Demodulated Analog Audio
Outputs

DSP-based Detection Modes
(demodulation)

AM, LSB, USB, ISB,' FM, CW,

PM

Number of Simultaneous Demodulated
Signals per Mezzanine

(Characteristic)
Maximum Realtime Demodulated

Bandwidth®
(single channel per mezzanine)

Analog Audio Output Bandwidth
(Characteristic)

Up to 5 signals? (See Table 5-3)

(up to atotal of 10 us
second mezzanine)

ing optional

AM: 374 kHz

FM: 462 kHz
LSB/USB: 167 kHz
ISB: 138 kHz
CW: 462 kHz
PM: 138 kHz

15 kHz, maximum

COR (carrier operated relay)

Use TTL trigger outp

ut signal

(no traditional COR dry contacts)

Squelch Range
(Characteristic)

ALC (automatic level control) Range
(Characteristic)

ALC Response Time
(Characteristic)

AFC (automatic frequency control)
Tracking Range

(Characteristic)

FM De-emphasis
(Characteristic)

-125 dBm to -20 dBm

Adjustable; > 100 dB

(volume control; maintains audio
level to within 25% full scale;
used for USB, LSB, and ISB)

Adjustable in 1 us steps;

range: 1 usto 10s

+1/2 DDC BW

1. Independent sideband (ISB) is supported. However, |SB signal channel

requires two DDC channels.

2. The standard receiver includes one or two DDCs depending on the specific
model number. Options are required for two or five DDCs per mezzanine. The
EB501A and E6503A require an option for a second mezzanine.

3. Maximum modulation frequency is dependent on modulation format. For
example, the maximum modulation frequency for AM is half the bandwidth, so
the maximum modulation frequency is 187 kHz.

5-12 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications

IF (Intermediate Frequency) Processing

Table 5-3 Number of Simultaneous Channels

AM

PM

5 4 3 2 1
DDC Bandwidth (kHz) 247-30 34-54 62 -83 93 - 167 187 - 374
FM 5 4 3 2 1
DDC Bandwidth (kHz) 247 -30 34-54 62-83 93-187 201 - 462
USBI/LSB! 5 4 3 2 1
DDC Bandwidth (kHz) 247 - 25 30 - 34 44 54 - 74 83- 167
CcwW 5 4 3 2 1
DDC Bandwidth (kHz) 247 - 30 34-54 62 - 83 93-187 201 - 462
5 4 3 2 1
DDC Bandwidth (kHz) 247 -25 30 34 44 .62 74 - 138

two DDC channels.

1. Independent sideband (ISB) is supported. However, each signal channel requires

Maximum Audio Output
(Characteristic)

Audio Output Connector Type

1 volt RMS into 600 ohms

AMP 750823-1 on front panel of

E6404A IF Processor module for
connection to separately ordered
cable and audio breakout box (or
order AMP 750833-1 cable
connector and 750850-3 backshell
kit to configure your own cable)

External Cable and Audio Breakout
Box

Trigger Input

Ordered separately as E3245A

(includes 10 mini-phone plugs for
connection to headphones or
amplified speakers)

TTL level (uses 2 pins on

AMP 750823-1 audio connector);
used to synchronize data.

Refer to Table 3-3.

Trigger Output

TTL level (uses 2 pins), controllable
from software driver.
Refer to Table 3-3.

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-13

Specifications
Physical Characteristics

Physical Characteristics

Front Panel Connectors

E6401A VXI Module 20 - 1000 MHz Input, SMA

(20 to 1000 MHz downconverter) block downconverter input, SMA
1st LO input, SMC
2nd LO input, SMC
21.4 MHz IF output, SMB

E6402A VXI Module 1st LO output, SMC

(local oscillator) 2nd LO output, SMC
block downconverter LO output, SMC
3rd LO output, SMB
reference output, SMB
external reference input, SMB
reference TTL output, SMB

(The E6503A dual channel receiver
includes the E6402A Option 002 LO
module which adds a second set of the
following outputs: 1st LO output, 2nd LO
output, and block downconverter LO

output.)
E6402A Option 002 Module Ext Reference in, SMB
(dual LO output) Reference TTL Out, SMB

Reference out, SMB
BD LO output, SMC (2)
1st LO output, SMC (2)
2nd LO output, SMC (2)
3rd LO output, SMB

E6403A VXI Module 20 to 3000 MHz input, SMA

(1000 - 3000 MHz block 20 to 1000 MHz output, SMA
downconverter)

block downconverter output, SMA
block downconverter LO input, SMC

E6404A VXI Module Ch1 IF input, SMB

(IF processor) Ch2 IF input, SMB (option required)
reference input, SMB
reference output, SMB
audio output/trigger input (on mezzanine 1)

audio output/trigger input (on optional
mezzanine 2)

link port 1/2 output (on mezzanine 1)

link port 1/2 output (on optional mezzanine
2)

5-14 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications
Physical Characteristics

Weight
(Characteristic)

E6501A (20 - 1000 MHz) 8.6 kg (18 Ibs, 11 0z)
Receiver

E6501A Option 003 11.3 kg (24 Ibs, 9 0z)

(20 - 3000 MHz) Receiver

E6502A (20 - 1000 MHz) 14.4 kg (31 Ibs, 5 0z)
Receiver

E6502A Option 003 19.8 kg (43 Ibs, 1 0z)
(20 - 3000 MHz) Receiver

E6503A (20 - 1000 MHz) 11.3 kg (24 Ibs, 9 0z)
Receiver

E6503A Option 003 16.7 kg (36 Ibs, 5 0z)
(20 - 3000 MHz) Receiver

E6401A module 2.7 kg (5 Ibs, 14 0z)
(20 - 1000 MHz downconverter)

E6402A module (local 3.1 kg (6 Ibs, 12 oz)
oscillator)

E6403A module (1000 - 3000 2.7 kg (5 Ibs, 14 0z)
MHz block downconverter)

E6404A module (IF processor) 2.8 kg (6 Ibs, 1 0z)

1. EB404A IF processor weight includes complete set of options.

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-15

Specifications
Physical Characteristics

— lat— 45 MM
(1.8 in) including connectors
— 37 mm 8 mm
(1.5in) 03I ™[
f =5 i
i 88 mm
262 mm U '
(10.3 n) | 5 (3.51n)
E6401A 128 mm Z z |
E6402A 5in) =
E6403A | =l |

E6401A 192mm e | g
Option 001 (7o

31 mm

(1.2in) 345 mm—q
—y————— .
(13.6in)

Figure 5-1 Dimensions of the E640XA Modules Comprising the E650XA VX1
Receivers, (Front-panel connectors vary with model and option.)

5-16 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications
General Information

General Information

Power Requirements‘I

(Characteristic)

E6501A (20 - 1000 MHz) " 90 watts
E6501A Option 003 104\;&153
{20 — 3000 MHz)

E6502A (20 — 1000 MHz) 126 watts
E6502A Option 003 154 watts
(20 — 3000 MHz)

E6503A (20 - 1000 MHz) 104 watts
E6503A O;;tion 003 132 watts

(20 - 3000 MHz)

1. Power requirements based on the E6404A |F processor with two IF channels, two
mezzanines, ten DDCs, two DSPs, and two 4 Mbyte RAMs.

Power Requirements
(characteristic)

-5.2 Vdc

+24 Vdc

—24 Vdc

-2 Vdc

-12 Vdc

Module +5 Vdc
E6401A
DC Current 048 A 0.34 A 058 A 0.022 A NA NA
Dynamic Current 010A 007A 0.10A 0.00 A NA NA
E6401A
Option 001
DC Current 0.74 A 0.39A 0.58 A 0.021 A NA NA
Dynamic Current 0.16 A 0.09 A 010 A 0.00 A NA NA

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-17

Specifications
General Information

Power Requirements
(characteristic)

—24 Vdc

-2Vdc -12Vdc

Module +5Vdc -5.2Vdc +24 Vdc
E6402A
DC Current 075A 0012A 1.035A 0124A NA NA
Dynamic Current 017A 0.00A 0.19A 0.02 A NA NA
E6403A
DC Current 0450A 0.341A 0361A 0.161A NA NA
Dynamic Current 021A 0.08A 0.06 A 0.03A NA NA
E6404A
DC Current 8 A 3A 03A NA 01A 0.2A
Dynamic Current 1A 03A 0.03 A NA 0.01 A 0.02 A
Calibration and Adjustment
Calibration Interval 2 years
Internal Timebase Adjustment Interval 1 year

Warranty

3 years

5-18 E6501A/E6502A/E6503A VXI Receiver User's Guide

Specifications
Environmental Information

Environmental Information

Operating 0°Cto55°C
Temperature

Storage Temperature -20°Cto +70 °C

EMC CISPR 11 Class A,

MIL-STD-461C REO2 Parts 5 and 7; IEC
801-3; HP ETM 765 RS2, IEC 1000-4-6;
VXI-EDG B.8.6.3 and B.8.6.4; IEC 801-2 and
HP ETM 765.

Humidity HP ETM 758 Class A2, B1, B2 (40 °C, 95%
RH.)

Shock MIL-T-28800E;
HP ETM 760

Vibration MIL-T-28800E Class 3; HP ETM 759 Class
B2;

HP ETM 762

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-19

Specifications
VXI Information

VXI Information

VX1 Control

VXI plug-and-play driver for Windows® NT O/S; National Instruments MXI|-2

interface required for NT O/S

Module Size

VXI| C-size modules

Slots Used

VXl Interface

3 slots (E6501A 1 GHz Rx)
4 slots (E6501A Option 003 3 GHz Rx)
5 slots (E6502A 1 GHz Rx)
7 slots (E6502A Option 003 3 GHz Rx)
4 slots (E6503A 1 GHz Rx)

6 slots (E6503A Option 003 3 GHz Rx)

Requires MXI interface (not included)

5-20 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Specifications
Regulatory Information

Regulatory Information

The information on the following page applies to the E6501A,
E6502A, and E6503A VXI receivers, and all options of these products.

E6501A/E6502A/E6503A VXI Receiver User's Guide 5-21

Specifications
Regulatory Iinformation

DECLARATION OF CONFORMITY

according to ISO/IEC Guide 22 and EN 45014

Manufacturer’s Name: Hewlett-Packard Co.

Manufacturer’s Address: Santa Rosa Systems Division
1400 Fountaingrove Parkway
Santa Rosa, CA 95403-1799

USA
declares that the products
Product Names: VXI Receivers and IF Processor Module
Model Numbers: HP E6501A, HP E6502A, HP E6503A,
HP E6404A
Product Options: This declaration covers all options of the

above products.
conform to the following Product specifications:

Safety: IEC 1010-1:1990+A1/EN 61010-1:1993
CAN/CSA-C22.2 No. 1010.1-92

EMC: CISPR 11:1990/EN 55011:1991 Group 1, Class A
IEC 801-2:1984/EN 50082-1:1992 4 kV CD, 8 kV AD
IEC 801-3:1984/EN 50082-1:1992 3 V/m, 27-500 MHz
IEC 801-4:1988/EN 50082-1:1992 0.5 kV Sig. Lines, 1 kV Power Lines

Supplementary Information:

The products herewith comply with the requirements of the Low Voltage Directive
73/23/EEC and the EMC Directive 89/336/EEC and carry the CE-marking accordingly.
The HP E6501A, HP E6502A and HP E6503A VXI Receivers consist of various

combinations of HP E6401A, HP E6402A, HP E6403A and HP E6404A modules. The
systems were tested in HP E1401B mainframes.

., At

Greg Pfeiffer/Quality Engineering Manager

Santa Rosa, CA, USA 1 May 1998

European Contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department
HQ-TRE, Herrenberger Strasse 130, D-71034 Boblingen, Germany (FAX +49-7031-14-3143)

5-22 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference

Programming Command Reference

In This Chapter

® Qverview
® Return Values

® Command Lists

E6501A/E6502A/E6503A VXI Receiver User’s Guide 6-1

Programming Command Reference
Overview

Overview

The driver software provided with the E650XA receiver allows the user to
control the E650XA hardware from their custom software. This driver
software is designed to meet the VXI plug & play standards set forth by the
VXI Systems Alliance.

The driver software performs the following functions:
® Maps hardware to software.

® Passes data to and from the user’s program.

¢ Passes task requests to the DSP software.

® Establishes tuner control mechanism.

® Establishes hardware signal paths.

Figure 6-1 shows a model of the software/hardware (hierarchy) structure.

/ VFP/GUI

User Program

Interactive Programmatic
Development Developer
Interface Interface

_1 —— Driver
Instrument Driver
(Functional Body)

Subroutine VISA /0
Interface interface

Receiver T
DSP Commands

vpt

Figure 6-1 Model Applied to the E650X Receiver

Note that the VISA software library must be used with the E650X receiver
regardless of the platform. There are two advantages with using the VISA
library: single 1/O library to communicate with most instrument interfaces,
and it is a standard library that all plug & play drivers must use. The library
is installed by default when the MXI controller card is installed.

6-2 E6501A/E6502A/E6503A VXI Receiver User’'s Guide

Driver Architecture

Figure 6-2

Capability Classes

Programming Command Reference
Overview

Figure 6-2 shows the architecture of the driver software.

;
;ﬁ hpabSx mrer ssemage
i hpefSOx errar suey
L Rl reset
hpeblix sl test

kst Ny ravidan gumy

Application I'unctions

1™
b — —
=&
® Inidsatize . o Chose
E = Funriion Capubility (i Funciyon,
T =2
T U riitey
- Funciirans
hpeShx it
hpebx o
Driver Architecture

The capability class is a collection of intermediate-level functions that allow
developers and integrators greater access to instrument capabilities.

The capability classes are divided into the following files:

Common.c
Monitoring.c
Search.c
FFT.c

Capability class functions group the instrument driver functions according to
the instrument’s capabilities such as measure, source, route, etc. In the case
of the E650XA receivers, only the measure and route class functions are
applicable. At the highest level within a capability class, each function
executes a complete action. No prior instrument state is assumed. This
allows these functions to be order independent. Execution of a capability
class function produces a finished result such as a returned value of a
measurement or a connected route by a switch.

For example, the measure class is divided into configure and read function
classes. Configure functions configure the device for a particular
measurement but do not execute the measurement. Read functions initiate
the measurement and read the result from the instrument.

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-3

Programming Command Reference
Overview

Measure Capability Class Functions

Functions in the measure class configure a device for a particular
measurement, initiate that measurement, and read the result in a single
operation. Typically, these functions include multiple parameters and
require no interaction with other instrument driver operations. The measure
class functions consist of the following structure:

Configure
® Read Function
Initiate
Fetch

The measure class functions are further divided into real-time demodulation
or stepped-tuner mode. Driver software commands that control DDCs,
capture data, or control FFT measurements are examples of measure
capability class functions and can also be referred to as functions that control
the mezzanine.

Configure and read functions of the measure class provide a highly abstract
control interface to the capabilities of a measurement device. These
functions correspond to the measure functions except they separate the
functionality of configuration from the functionality of reading measured
values from the instrument.

Configure functions configure an instrument for a particular measurement
but do not initiate that measurement. No finished result is provided. Read
functions complete the measurement function action by initiating the
measurement and providing the result. Read functions have a specific
sequence dependency with their complimentary configure function.

The read functions depend on the instrument state produced by the configure
functions. However, because the configure and read functions are separated,
there is an opportunity to send additional low level commands which modify
the instrument state prior to calling the read function. This allows the default
action of a measurement function to be modified, providing more control
over the test execution. For example, the application program may choose to
defer measurement execution until all of the instrument modules have been
configured.

Read functions may be further divided into initiate and fetch functions.
These functions separate the initiation of a measurement from the data
retrieval. This gives the user finer control of the measurement operation.

6-4 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Application Functions

Programming Command Reference
Overview

Route Class Functions
The route class functions consist of the following type of functions:

® Configure
® Initiate

The route class functions set signal path conditions or control signal routing
through the receiver. Driver software commands having a parameter to
control IF channel routing (IFchan), hpe650x_setAnalogFilter and
hpe650x_setIFGain, are examples of route class functions and can also be
referred to as receiver functions.

The application functions are a collection of high-level functions that
perform complete tests and measurement operations.

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-5

Programming Command Reference
Return Values

Table 6-1

Return Values

The E650X receiver functions return a defined value depending on the
outcome of the process. For example, if the function was successful, 0 is
returned. If the function failed, an error in the range of OxFECO 0000 to
0xFECO FFFF is returned. In other words, a zero corresponds to the
successful execution of the function, while any negative value corresponds
to an error condition.

Warnings have values greater than zero. A warning indicates a non-fatal
problem (function succeeded) during the execution of the function process.

Return Values

Defined Symbol

(defined in the hpe650x.h file)

Hexadecimal Value

VI_SUCCESS

0x0

VI_WARN_NSUP_ID_QUERY

0x3FFC 0101

VI_WARN_NSUP_RESET

Ox3FFC 0102

VI_WARN_NSUP_SELF_TEST Ox3FFC 0103
VI_WARN_NSUP_ERROR_QUERY Ox3FFC 0104
VI_WARN_NSUP_REV_QUERY Ox3FFC 0105

VI_ERROR_PARAMETER1 (refer to the vpptype.h file)

VI_ERROR_PARAMETER2 (refer to the vpptype.h file)

VI_ERROR_PARAMETERS3 (refer to the vpptype.h file)

VI_ERROR_PARAMETER4 (refer to the vpptype.h file)

VI_ERROR_PARAMETERS5 (refer to the vpptype.h file)

VI_ERROR_PARAMETERS6

(refer to the vpptype.h file)

VI_ERROR_PARAMETER?7 (refer to the vpptype.h file)

VI_ERROR_PARAMETERS (refer to the vpptype. h file)

VI_ERROR_FAIL_ID_QUERY (refer to the vpptype.h file)

VI_ERROR_INV_RESPONSE

(refer to the vpptype.h file)

DEFAULT_IFV_CONI-;IG_LJ’SVEiDV - ’ 7 0x0000 0001
MBRE;DATA_REMAINING W(r)r)’(OOOO 0002
SEARCH_ALREADY_STARTED OxOCOObOO?: 7)
SE@ZE&EADY_STOPF”ED 7 » OXOOCO 0004 B

FREQUENCY_INDEX_OUTSIDE_TRACE 0x0000 0005

6-6 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference

Re

turn Values

Defined Symbol
(defined in the hpe650x.h file)

Hexadecimal Value

WARN_NO_NEW_DATA

MAX_NUM_OF_IF_MODULES_REACHED

CANNWOT_OPEN_DEFAULT_SESSION

0x0000 0006
OxFECO 0001

OxFECO 0002

CANNOT_OPEN_VI_SESSION

INVALID_INSTRUMENT_ID

OxFECO 0003

OxFECO 0004

INVALID_OPTION_STRING

OxFECO 0005

INVALID_INDEX_NUMBER

TUNER_NOT_ATTACHED

OxFECO 0006

OxFECO0 0007

INVALID_IF_CHANNEL

OxFECO0 0008

INVALID_MEZZANINE_NUMBER

OxFECO O00A

INVALID_DAC_FILTER_NUMBER

OxFECO 000B

INVALID_MODE_NUMBER

INVALID_RF_FREQUENCY

INVALID_LOGICAL_ADDRESS

OxFECO 000C

OxFECO 000D

OxFECO 000E

TUNER_NOT_CONTROLLED

IMPROPER_MEZZANINE_MODE

INVALID_BANDWIDTH_VALUE

OxFECO 000F

OxFECO0 0010

OxFECO 0011

NOT_VALID_IN_MONITOR_MODE

INVALID_DDC_NUMBER

OxFECO 0012

OxFECO 0013

INVALID_GAIN_VALUE

INVALID_ATTENUATION_SETTING

INVALID_SOURCE_VALUE

INVALID_DIGITAL_BANDWIDTH

INVALID_DDC_FREQUENCY

OxFECO 0014

OxFECO 0015

OxFECO 0016

OxFECO0 0017

OxFECO 0018

INVALID_DAC_NUMBER

OxFECO 0019

INVALID_ALC_SELECT_VALUE

OxFECO 001A

INVALID_PROCESSS_NUM

OxFECO 001B

CANNOT_ADJUST_IN_TIME_MODE

OxFECO 001C

INVALID_FFT_LENGTH

OxFECO0 001D

MODULE_IS_NOT_HEWLETT_PACKARD

OxFECO 001E

CANNOT_OPEN_LOADER_FILE

OxFECO 001F

MODULE_IS_NOT_E6401

OxFECO 0021

MODULE_IS_NOT_E6402

OxFECO0 0022

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-7

Programming Command Reference
Return Values

Defined Symbol
(defined in the hpe650x.h file)

Hexadecimal Value

MODULE_IS_NOT_E6403

MODULE_IS_NOT_E6404

OxFECO 0023

OxFECO 0024

UNABLE_TO_WRITE_TO_DSP

IF_MODULE_FAILED_TO RESPOND

OxFECO 0026

OxFECO 0027

CANNOT_WRITE_TO_IF_MODULE

OxFECO 0028

INVALID_AUDIO_VALUE

OxFECO0 0029

INVALID_DEMOD_VALUE

OxFECO 002A

RSSI_DATA_NOT_YET_AVAILABLE

OxFECO 002B

INALID_PROCESS_NUMBER

OxFECO 002C

INVALID_SCALE_TYPE

OxFECO 002D

FAILED_RAM_TEST

RAM_TEST_TIMED_OUT
INVALID_WINDOW_TYPE

FFT_NOT_A_POWER_OF_TWO

OxFECO 002E
OxFECO 002F
OxFECO0 0030

OxFECO0 0031

CANNOT BEGIN_FFT_PROCESS
INALID_SETUP_PROCEDURE
SANITY_CHECK_FAILED
UNABLE_TO_READ_ATTENUATOR

AUTORANGE_NOT_ACTIVE
INVALID_SETTLING_TIME
INVALID_GAIN_SETTING

INVALID_CAPTURE_FORMAT

INVALID_CAPTURE_DESTINATION

FAILED_LINK_PORT_TEST

CAPTURE_PROCESS_RUNNING

INVALID_OUTPUT_DEVICE

AUDIO_CHANNEL_INACTIVE

ERROR_IN_CAPTURE_CONFIGURATION

FAILED_TO_ARM_DDC

NO_DDC_SPECIFIED_TO_CAPTURE

NO_CAPTURE_PROCESS_RUNNING

INVALID_TRACE_LENGTH

INVALID_SEARCH_TYPE

OxFECO 003D

OxFECO0 0043
OxFECO 0044

OxFECO 0032
OxFECO 0033

OxFECO 0034

OxFECO 0035

OxFECO 0036

OxFECO 0037

OxFECO0 0038

OxFECO 0039

OxFECO 003A
OxFECO 003B
OxFECO 003C

OxFECO 003E

OxFECO 003F
OxFECO 0041

OxFECO 0042

OxFECO 0045

6-8 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
Return Values

Defined Symbol
(defined in the hpe650x.h file)

Hexadecimal Value

INVALID_ALC_TIME_PARAMETER

INVALID_RSSI_TIME_PARAMETER

OxFECO 0046
OxFECO0 0047

CAPTURE_PROCESS_FAILED

OxFECO 0048

NO_CAPTURE_DATA_FOR_DDC

NO_ADC_DATA_CAPTURED

OxFECO 004A
OxFECO 004B

NO_ABSOLUTE_AMPLITUDE_OPTION OxFECO 004C

RSSI_NOT_ACTIVE

OxFECO 004D

FFT_PROCESS_NOT_ACTIVE OXFECO 004E
INVALID_AVERAGE_VALUE OxFECO 004F
INVALID_TRIGGER_ACTION OXFECO 0050
FAILED_TO_ARM_DDCs OXFECO0051
FAILED_TO_ARM_DSP OXFECO 0052
SRAM_NOT_INSTALLED . OxFEC00053
INVALID_NUMBER_OF_SAMPLES OXFECO 0054
INVALID_SCALE_SOURCE ~ OxFEC00055
CANNOT_GET_COR_VALUE OXFECO 0056
SEARCH_NOT_ACTIVE OXFECO 0057 -

INVALID_GAIN_NUMBER

OxFECO 0058

FFT and search functions that return trace data will return a value of -1 when
the DSP does not have data ready for the user’s software.

Special Values

E6501A/E6502A/E6503A VXI Receiver User’s Guide 6-9

Programming Command Reference
Command Lists

Pointers to Memory
Addresses

Command Lists

Commands in this chapter are grouped by file source (capability class):
® VXI Plug and Play (from the file common.c)

® From the file common.c

® From the file search.c

®* From the file monitor.c

® From the file FFT.c

The following commands must be called in every session and must be in the
following sequence:

ViStatus VI FUNC hpe650x_init(),
ViStatus VI FUNC hpe650x_initlFChannel(),
ViStatus VI FUNC hpe650x_setMonitoringMode();

or

ViStatus VI FUNC hpe650x_setSearchMode();

ViStatus VI FUNC hpe650x_close();

The success, error, and warning values are the only values returned.
Retrieving actual data, such as IF attenuator setting, tuner frequency, digital
IF bandwidth, etc., is accomplished by using pointers. A pointer is expected
to be the address of allocated memory where the data is to be stored. These
parameters have the letter “P” somewhere in their data type name. For
example, ViPSession, ViPInt32, and ViPReal64 indicate that their
corresponding parameters are pointers to the location where actual data is
stored. Most commands starting with “get” have at least one pointer in the
function’s parameter list.

6-10 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Programming Command Reference
VXI Plug and Play (from common.c)

Command/Action Data Type Parameters

VXI Plug and Play (from common.c)

hpc65()>;;audeonﬁgure

Returns all modules configured Vilint32 module_data[] The array address passed by the

in the receiver. user into which the module data will
be passed. This array contains the
following data:

* Module ID number

270 - 1 GHz downconverter
271 - local oscillator
272 - 3 GHz block
downconverter
273 - IF processor

+ Slot number

+ Logical address

Syntax: ViStatus VI_FUNC hpe650x_autoConfigure(module_data[]):

hpe650x_close

Terminates the session. ViSession instrumentID Index to the array maintained by
the driver.
Note: + This function is required by the Plug and Play committee.
» This command releases the IFP and its resources.

Syntax: ViStatus VI FUNC hpe650x_close(instrument!D)./*VISAIO.c*/
Example: Ret == hpe650x close(instrumentID);

hpe650x_error_message

» Returns text error message. ViSession instrument|D Index to the array maintained by

+ VISA PnP standard the driver.
command will return a text Vilnt32 error_code Status code returned by the driver.
representation of errors in ViString error_message Verbal translation of the numeric
warning codes known to the code.

hpe650x sub-system.
Note: -+ Will return VI_SUCCESS if code found.
* Will return VI_WARN_UNKNOWN_STATUS if status code not known.

Syntax: ViStatus VI FUNC hpe650x_error_message(instrumentiD, error code, error_message).

hpe630x_error_query

+ Returns current error state of ViSession instrumentlD Index to the array maintained by
hardware. the driver.

* Not Supported. ViPInt32 error_code Not supported.

» VISA PnP standard ViString error_message Not supported.
command.

Note: Will return VI_WARN_NSUP_ERROR_QUERY

Syntax: ViStatus_ VI _FUNC hpe630x_crror_query(instrumentID, error_code,
error message)./*common.c*/

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-11

Programming Command Reference
VXI Plug and Play (from common.c)

Command/Action Data Type Parameters

hpeéSd*égetIFAttenuator

Returns current IF attenuator ViSession instrumentiD Index to the array maintained by
setting. the driver.
Vilnt32 IFchan IF channel for communication.
0 = IF channel 1
1 =IF channel 2
ViPInt32 attenuator Pointer to the address of the

allocated memory for the
attenuator setting.

ViPInt32 rampage Pointer to the address of allocated
memory for rampage setting.

Note: This command and the hpe650x_setAutorangeLock command are linked. If you call the
hpe650x_setAutorangelLock command with the use_external_gain parameter set to
TRUE, then you must call the hpe650x_getlF Attenuator command first on the master IF
processor.

Syntax: ViStatus VI FUNC hpe650x_getlFAttenuator(instrumentlD, [Fchan, attenuator, &rampage):
Example: ViStatus Ret:
Vilnt32 IFChannel=0:
Vilnt32 att, rampage:
Ret = hpe650x_getlFAttenuator(instrumentlD, [FFChannel. att, &rampage):

hpe650x _getTunerTemperature

Returns internal temperature of ViSession instrumentiD Index to the array maintained by
tuner unit in receiver. the driver.
Vilnt32 IFchan IF channel for communication.

0 = IF channel 1
1 = |F channel 2

ViPReal64 temperature Pointer to the address of allocated
memory for temperature in Celsius.

Syntax: ViStatus VI FUNC hpe650x_getTunerTemperature(instrumentID. IFchan, temperature):
ViReal64 temp;
Example: Vilnt32 IF=0:
Ret = hpe650x_getTunerTemperature (instrumentlD, IFF. &temp):

6-12 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Programming Command Reference
VXI Plug and Play (from common.c)

Command/Action

Data Type Parameters

hpe630x_init
« Initializes communications to
the IF processor.

+ Confirms that the logical
address passed is that of an
Agilent Technologies IF
processor (to prevent
initializing the incorrect
module).

» The only supported use is
idQuery=true and
resetinstr=true.

» VISA PnP standard
command.

Note:

Syntax:

Example:

hpe650x_readOptionString
Returns a list of options
installed in the EG404A.

Syntax:

Example:

ViRsrc rsrcName String built by the user interface
and passed to the VISAIO library.
Refer to the VISA documentation

for more information.

ViBoolean idQuery Determines if the option string will
be read from the hardware by the
driver. A value of true will force the
driver to read the option string and
enable error checking based on the

results.

Determines if the DSP will be reset
after the code is loaded. This value
usually will be true, and MUST be
true if you are booting from Flash
ROM.

Pointer to the address of the
memory you have allocated for the
instrument ID.

ViBoolean resetinstr

ViPSession plnstrumentiD

= This must be the first command called before any other command.

+ This command must be called only once per IF module

» This function is required by the Plug and Play committee.

+ The COMMON_STATE internal data structure contains the actual_instrument_id. The

value passed to the functions is really an index to the array of structures containing
information for the unit.

All subsequent commands to the E650X should be referenced by this InstrumentID
number.

ViStatus_VI_FUNC hpe650x_init(rsreName, idQuery, resetinstr. pInstrumenti D).
* ViStatus Ret:

ViSession InstrumentlD:
Ret = hpe6350x_init ("VXI0::43::INSTR". VI_TRUE. VI_TRUE. &/nstrument/D);

ViSession instrumentID Index to the array maintained by
the driver.
Viulnt16 option_buff[] The array address passed by the

user into which the option string will
be passed.

ViStatus_ VI_FUNC hpe630x_readOptionString(instrument!D, option buff] [):/* common.c*/

ViStatus Ret:
ViUInt16 option_buff]256]:
Ret = hpe650x_readOptionString(instrumentlD, option_buff);

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-13

Programming Command Reference
VXI Plug and Play (from common.c)

Command/Action

hpe650x_reset

* Resets the DSP.

* VISA PnP standard
command.

Syntax:
Example:

Data Type Parameters

Index to the array maintained by
the driver.

ViSession instrumentiD

ViStatus VI FUNC hpe650x_reset(instrumentiD);/* common.c*/

ViStatus Ret:
Ret = hpe650x_reset(instrumentID);

hpe650x_revision_query

» Returns current version of

firmware and driver software.

* VISA PnP standard
command.

Syntax:

Example:

llchSOxisanityChéck

Reads and writes to the DSP to
determine if the processor is
still able to both read and write
commands.

Index to the array maintained by
the driver.

The array address passed by the
user that points to a memory block
which the driver revision will be
written to.

ViSession instrumentiD

ViChar_VI_FAR driver_rev(]

The array address passed by the
user that points to a memory block
which the instrument revision will
be written to.

ViChar_VI_FAR instr_rev(]

ViStatus VI FUNC hpe650x_revision_query(instrumentID, driver revf],
instr rev[]},/*common.c*/

Char driver[256].instrument[256]:

Ret = hpe650x_revision_query(instrumentID, driver. instrument);

ViSession instrumentlD Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine containing DSP to be

checked.
0 = mezzanine 1
1 = mezzanine 2

Note: This command is useful during development to ensure the processor is still operating.
This is especially true when data is expected to be received but is not.
Syntax: ViStatus VI FUNC hpe650x_sanityCheck(instrument!D, mezz num):
hpe650x_self_test
Not supported. ViSession instrumentID Index to the array maintained by
the driver.
ViPInt16 test_result Not supported.
ViChar VI FAR test_message[] Not supported.
Note: Will return Vi_WARN_NSUP_SELF_ TEST
Syntax: ViStatus_VI_FUNC hpe650x_self_test(instrumentlD, test result,test messagef[):/* common.c*/

6-14 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
VXI Plug and Play (from common.c)

Command/Action Data Type Parameters

@650);:5&/\bsAmplitudeCaISiénalCorr

Improves amplitude accuracy ViSession instrumentID Index to the array maintained by
in certain extreme temperature the driver.
conditions. Vilnt32 IFchan IF channel for communication.

0 = IF channel 1
1 = IF channel 2

ViBoolean enabled VI_TRUE enables and VI_FALSE
disables this function.

ViReal64 calSignalLevel Measured RSSI value of the
front-panel 3rd LO Out from the
E6402A LO module in dBm.

Note: This is an option-dependent command. The absolute amplitude option must be installed
or an error will be returned.

Syntax: ViStatus_VI_FUNC hpe650x setAbsAmplitudeCalSignalCorr(instrumentID. IFchan, enabled,
calSignalLevel);

hpe650x_setAbsAmplitudeTempComp

This is an option-dependent ViSession instrumentiD Index to the array maintained by
command. The absolute the driver.

amplitude option must be ViBoolean enabled VI_TRUE enables and VI_FALSE
installed or an error will be disables built-in temperature table.
returned.

Syntax: ViStatus VI FUNC hpe650x_setAbsAmplitudeTempComp(instrumentlD.
enabled):
Example: ViBoolcan useTempComp=VI TRUE;
ViSession InstrumentlD:

ViStatus ret;
ret=hpe650x_setAbsAmplitudecTempComp (instrumentlD. useTempComp):

hpe650x_setAbsoluteAmplitude

The serial number for the tuner ViSession instrumentlD Index to the array maintained by
for each IF channel is stored in the driver.
the IF processor. Vilnt32 IFchan IF channel for communication.

0 = IF channel 1
1 =IF channel 2

ViBoolean enabled VI_TRUE enables and VI_FALSE
disables optional absolute
amplitude values.

Note: This is an option-dependent command. The absolute amplitude option must be installed
or an error will be returned.

Syntax: ViStatus VI_FUNC hpe650x_sctAbsolutcAmplitude(instrumentID,
IFchan, enabled);

E6501A/E6502A/E6503A VXI Receiver User’s Guide 6-15

Programming Command Reference
VXI Plug and Play (from common.c)

Command/Action

hpééS()xisetAnalogFilter

Sets the analog filter in the IF
processor. The 8 MHz
bandwidth setting is the
default.

Syntax:

Example:

Data Type Parameters

ViSession instrumentID Index to the array maintained by
the driver.

Vilnt32 IFchan IF channel for communication.

0 = IF channel 1
1 =1F channel 2

Vilnt32 bandwidth ¢ = 30 kHz
1 = 700 kHz
2 =8 MHz

ViStatus_ VI _FUNC hpe650x_setAnalogFilter(instrument]D, IFchan, bandwidth);

Vilnt32 IF=0, filter=0:
Ret = hpe650x_setAnalogFilter(instrumentlD, IF, filter);

Sce also “To set up an FIFT measurement™ in Chapter 3.

hpe650x_setAutorangeLock

This command either locks the
autorange to a specified gain
setting, or locks the autorange
with a value from another IF
channel.

Note:

Syntax:

Example:

ViSession instrumentlD Index to the array maintained by
the driver.
Vilnt32 IFchan IF channel for communication.

0 = IF channel 1
1 =1F channel 2

ViBoolean lock Whether the autorange is locked or
not, a value of VI_TRUE locks the
range value, while VI_FALSE
allows autorange to continue.

Vilnt32 value Specified gain setting index (0 to
15).
ViBoolean use_external_gain A value from another IF channel.

Typically, this is used in a
master-slave configuration.

« This command and the hpe650x_getIFAttenuator command are linked. If you call this
command with the use_external_gain parameter set to TRUE, then you must call the
hpe650x_getIFAttenuator command first on the master |F processor.

+ Lock the autorange control when performing any process where you do not want the
gain changing values; for example, when capturing full span data.

ViStatus VI FUNC hpe650x_setAutorangel.ock(instrumentID, [Fchan,
lock, value. use external gain);

See ~To turn autoranging off " in Chapter 3.

hpc650x_setDitherState
Controls ADC dither operation.

Syntax:

ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 [Fchan IF channel number:

0 = IF channel 1.
1 =IF channel 2.

Vilnt32 newstate 1 = Dither on, 0 = Dither off.

ViStatus_VI_FUNC hpe650x_setDitherState(instrumentID, [Fchan, newstate):

6-16 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From common

Command/Action

From common

hpe650x_getIF3dBBandwidth

Computes the 3 dB points for
the antialiasing filter being
used.

Note:

Syntax:
Example:

Data Type Parameters

Vilnt32 index Valid DDC index to the
DDC_PecimationRate array.

ViPReal64 bandwidth_hz Address of the variable into which

the bandwidth value will be placed.

« There is an array of pre-computed supported decimation rates, which may be altered
(as in custom systems) for different sample rates. Error-checking is based on a
constant in the Ape650x.4 file.

» The DDC bandwidth setting is computed as:

(DDC 3dB Factor) - 2 - (ADC Sumpling Rate)

DDC Bandwidth (Hz) = Docimation Rai
”) o

ViStatus_ VI FUNC hpe630x_getlF3dBBandwidth(index, bandwidth hz),
ViRecal64 BW:

Vilnt32 DDC=2;

Ret = hpe650x_getlF3dBBandwidth(DDC. &BW).

hpe6350x_initlFChannel

Initializes the variables for the
IF channel, establishes
communication to the logical
addresses of the tuner cards,
and establishes a connection

ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 IEchan |F channel for communication.

0 = IF channel 1
1 =IF channel 2

between the mezzanine and

1 Confirms that the specified IF
the IF channel. ViBoolean tuner_attached

channel is controlling a tuner.

ViReal64 InitialRFFrequency Sets the state variable for the
frequency.
Vilnt32 . LO_LogicalAddr Sets the logical address for the LO.
Vilnt32 OneGHz_LogicalAddr Sets the logical address for the
- 1 GHz downconverter.
Vilnt32 ThreeGHz_LogicalAddr Sets the logical address for the 3

GHz downconverter. If this module
is not installed, you must pass a 0.

Note: -« If the E650x will control a VXI-based tuner, you must use this command to specify the
logical addresses. Note that it is not possible to have two IF channels controlling a
single tuner.

» A value of 0 passed to the tuner_attached parameter indicates that the tuner will be
controlled by an external controller. A value of 1 passed to the tuner_attached
parameter indicates that the tuner will be controlied by the internal IF processor
(normal mode).

+ In a shared LO configuration, the 3 GHz downconverter module is initialized for one
channel but not for both.

Syntax: ViStatus_VI_FUNC hpe630x_initlFChannel(instrument{D, IFchan, tuner_attached,
Initial RF Frequency, LO_Logicaldddr, OneGHz LogicalAddr,

ThreeGHz LogicalAddr)./* These are hardware switch settings*/
Example: .)
ViSession InstrumentID

Vilnt32 IF=0. LO=41. OncGHz=42. ThreeGl17=40;

ViBoolean tuner=1:

ViStatus ret

ret = hpe6350x_InitlFChannel(instrumentID, IF, tuner, 20E6, 1.O, OneGHz, ThreeGliz)

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-17

Programming Command Reference

From common

Command/Action

Data Type

hpe657(7);<7_siérlréwcit'l"ur;e; 1 i)iM HiReference

Selects either the internal

10 MHz reference or an
external source. The internal
source is switched on by
default.

Syntax:

Example:

ViSession

Vilnt32

Vilnt32

Parameters

instrumentID

tuner_num

source

Index to the array maintained by
the driver.

Number of the tuner.
0 =tuner 1
1 =tuner 2

1 = internal source

0

= external source

ViStatus_ VI FUNC hpe650x_selectTuner l0MHzReference(instrumentiD, tuner num, source):

enum source { External=0,_Internal};
Vilnt32 Tunecr=0;

ret= hpe650x_selectTuner l0MIIzReference(instrumentID. Tuner. _External);

hpe650x_setDefaultlFConfig

Indicates whether one or two
mezzanines are installed.

Syntax:

ViBoolean

ViBoolean

mezzanine_one_exists

mezzanine_two_exists

VI_TRUE indicates mezzanine one
is installed; VI_FALSE if not.

VI_TRUE indicates mezzanine two
is installed; VI_FALSE if not.

ViStatus VI_FUNC hpe650x_setDefaultlFConfig (mezzanine one exists,

mezzanine (wo_exisis).

hpe650x_setIF10MHzReferenceOut

Turns on the 10 MHz reference
output. (Off is the default.)

Syntax:

Example:

ViSession

ViBoolean

instrument|D

enable

Index to the array maintained by
the driver.

VI_TRUE enables and VI_FALSE
disables this function.

ViStatus_VI_FUNC hpe6350x_setlF 10MHzReferenceOut (instrument D, enable):
See ~“To turn the IF processor 10 MHz reference on™ in Chapter 3.

Hpc()S()xisetVMezzanineDataSeIectMode

+ Establishes the IF signal
routing to the mezzanines.
Refer to Figures 3-42, 3-43,
3-44, and 3-45.

* Mode 4 is the default.

Note:

ViSession

Vilnt32

instrumentID

mode

Index to the array maintained by
the driver.

Valid modes and data routings are:

1

IF channel #1 data routed to all
DDCs

IF channel #2 data routed to all
DDCs

IF channel #1 data routed to 4
DDCs on mezzanine #1; data
routed to 5th DDC on mezzanine
#2. IF channel #2 data routed to
4 DDCs on mezzanine #2; data
routed to 5th DDC on mezzanine
#1

IF channel #1 data routed to all
DDCs on mezzanine #1.
IF channel #2 data routed to all
DDCs on mezzanine #2

The mezzanine configuration determines which modes the driver will allow. For example,
if mezzanine #2 does not exist, the driver will allow only mode 1 and mode 4. This

prevents getting unexpected values when addressing the last DDC on a mezzanine.

6-18 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Programming Command Reference
From common

Command/Action

Syntax:

Example:

Data Type Parameters

ViStatus_VI_FUNC hpe650x_setMezzanineDataSelectMode (instrumentID, mode).

ViSession instrumentlD;
Vilnt32 routingmode=4;
Ret= hpe630x_setMezzanineDataSelectMode(instrumentlD, routingmode);

hpe65(j;<;§étMonito;ingMode

Sets the DSP to operate in
monitoring mode.

Note:

Syntax:

Example:

ViSession instrumentlD Index to the array maintained by
the driver.
Vilnt32 mezz num Mezzanine housing the Sharc chip

to be booted.
0 = mezzanine 1
1 = mezzanine 2

You can switch between search and monitoring modes with the same session
(instrumentlD).

ViStatus_VI_FUNC hpe650x_setMonitoringMode(instrumentID, mezz_num);
See “To sct up an FFT measurement™ in Chapter 3.

hpc650x_setSearchMode

Sets the DSP to operate in
search mode.

Syntax:
Example:

hpe650x_setTu nerAtténuation

Adjusts the value of the tuner
input attenuator (AT-1 or
AT-2), depending on
frequency.

Syntax:

Example:

Index to the array maintained by
the driver.

Mezzanine housing the Sharc chip
to be booted.

0 = mezzanine 1
1 = mezzanine 2

ViSession instrumentiD

Vilnt32
mezz_num

ViStatus_ VI TUNC hpe650x_setSearchMode(instrument!D, mezz num);

See “To set up a search process™ in Chapter 3.

ViSession

instrumentID Index to the array maintained by
the driver.
Vilnt32 tuner_num Number of the tuner for which the
attenuator must be changed.
Vilnt32 attenuation Amount of attenuation in dB from 0

to 30 in 10 dB steps.

ViStatus_ VI_FUNC hpe650x_setTunerAttenvation(instrument/D, tuner_num, attenuation):
Vilnt32 IF=0. att=10:

ViStatus ret

ret = hpe650x_TunerAttenuation(instrumentID, IF. att):

See also ~To set tuner attenuation™ in Chapter 3.

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-19

Programming Command Reference
From search

Command/Action

From search

hp665()xfgetActuaISea;crhrét‘opl;“féq o

Retrieves actual stop
frequency.

Syntax:

hpe650x_getFFTBinWidth

Shows how much bandwidth is
contained in an FFT bin.

Syntax: ViStatus VI FUNC hpe650x_getFFTBinWidth(instrument]D, mezz num. &fft_bin_width):

Index to the array maintained by
the driver.

Mezzanine used for search
0 = mezzanine 1
1 = mezzanine 2

Data Type Parameters
ViSessions instrumentID

Vilnt32 mezz_num
ViPReal64

stop_freq

Actual stop frequency.

ViStatus_ VI_FUNC hpe650x_getActualSearchStopFreq(instrumentID,

mezz_num, stop _freq):

ViSession instrumentID
Vilnt32 mezz_num
ViPReal64 fft_bin_width

Index to the array maintained by
the driver.

Mezzanine used for search.
0 = mezzanine 1.
1 = mezzanine 2.

Pointer to the address of memory
allocated for the frequency value

per bin.

hpe650x_getNumberOfActiveModules

Returns the number of active
modules in the driver.

Note:
Syntax:

Example:

ViPInt32 numOfActiveModules

Pointer to address of memory

allocated for the number of active

modules.

Nine IF modules may be controlled by a single controller.

ViStatus_ VI_FUNC hpe650x_getNumberOfActive Modules(rmmOfdctive Modules):

Vilnt32 modules;
ret= hpe650x_getNumberOfActiveModules(&modules);
printf("There arc %d IF modules active in”, modules);

i\pi‘k)iOx_getSearchDecimationFactor

Decimates data down to fit
within trace length.

Syntax:

ViSession instrumentID
Vilnt32 mezz_num
ViPReal64 dec_factor

Index to the array maintained by

the driver.

Mezzanine used for search.
0 = mezzanine 1
1 = mezzanine 2

Pointer to the address of memory
allocated for the decimation factor

value.

ViStatus_ VI_FUNC hpe650x_getSearchDecimationFactor (instrumentID. mezz_num,

&dec_factor):

6-20 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From search

Command/Action

h})eéSOxigetSearch FFTLengtﬁ N

Retrieves actual search FFT
length.

Data Type

ViSession

Vilnt32

ViPInt32

Parameters

fft_length

instrumentlD Index to the array maintained by

the driver.

mezz_num Mezzanine used for search.

0 = mezzanine 1
1 = mezzanine 2

Pointer to the address of memory
allocated for the actual FFT length.

Syntax: ViStatus VI _FUNC hpe630x_getSearchFFTLength(instrumentID, mezz_num. fft_length):

hpe650xigetSearchlﬁrdiexFrqulency

This command returns the
center frequency for the bin
pointed to by the index
parameter.

ViSession

Vilnt32

ViBoolean

Vilnt32

ViPReal64

instrument!D Index to the array maintained by

the driver.

mezz_num Mezzanine used for search.

0 = mezzanine 1
1 = mezzanine 2

decimated_indexes Indicates whether the index has

been decimated.

index Index into the search span

corresponding to the index
parameter.

frequency Pointer to the address of the

memory allocated for frequency.

Syntax: ViStatus VI_FUNC hpe650x_getSearchIndexFrequency(instrumentlD. mezz_num.

hpe650x_getSearchResolutionBW

Retrieves actual search
resolution bandwidth.

Syntax: ViStatus VI FUNC hpe650x_getSearchResolutionBW (instrumentlD. mezz_num. res_bw):

decimated_indexes. index. &frequency):

ViSession

Vilnt32

ViPReal64

instrumentlD Index to the array maintained by

the driver.

mezz_num Mezzanine used for search.

0 = mezzanine 1
1 = mezzanine 2

res_bw Pointer to the address of memory

allocated for the actual bandwidth
value in Hz.

E6501A/E6502A/E6503A VXI Receiver User’s Guide 6-21

Programming Command Reference

From search

Command/Action

Data Type

Bipi)éifr)SOX*getSearchTrace

This command returns the
maximum and minimum power
values (in dBm) for each
decimated point.

Syntax:

Example:

ViSession

Vilnt32

ViReal64

ViReal64

Parameters

instrumentiD

mezz_num

maxtrace](]

mintrace[]

Index to the array maintained by
the driver.

Mezzanine used for search.
0 = mezzanine 1
1 = mezzanine 2

The array address passed by the

user into which the maximum tra
value will be passed.

ce

The array address passed by the
user into which the minimum trace

value will be passed.

ViStatus_ VI FUNC hpe650x_getScarchTrace(instrumentID, mezz_num. maxtrace[]. mintrace(]):

See “To set up a search process™ in Chapter 3.

hpe650x_getSearchTraceBlock

Returns trace data in small
blocks, rather than one long
trace.

Syntax:

hp0650xigetSearchTraceLength

Returns one amount of
amplitude points than will be
returned by the call to
hpe650x_get

SearchTrace().

Syntax:

ViSession

Vilnt32

ViReal64

ViPInt32

ViPUInt32

ViPBoolean

instrumentID

mezz_num

trace_block(]

index

length

last_one

Index to the array maintained by
the driver.

Mezzanine used for search.
0 = mezzanine 1
1 = mezzanine 2

The array address passed by the
user into which the trace block will

be passed.

The pointer to the sequence index

of the block.

Pointer to the address of the
memory allocated for the length
the trace block vector.

The pointer to the last block
indicator.

ViStatus_ VI_FUNC hpe650x_getSearchTraceBlock(instrumentlDD. mezz_num. trace_block]].

&index, &length. &last_one):

ViSession

Vilnt32

ViPInt32

instrumentID

mezz_num

trace_length

Index to the array maintained by
the driver.

Mezzanine used for search.
0= mezzanine 1
1 = mezzanine 2

of

Pointer to the address of memory

allocated for the actual FFT leng

ViStatus VI FUNC hpe6350x_getScarchTracel.ength(instrumentID,

mezz_num, trace length):

th.

6-22 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From search

Command/Action Data Type Parameters

hpeéSUx_setSearchOutputTraceLehgth

Decimates trace data ViSession instrument|D Index to the array maintained by
automatically. the driver.
Vilnt32 mezz_num Mezzanine used for search.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 target_trace_length Specified trace length. The

minimum is 10, and the maximum
is the actual length of the FFT.

Syntax: ViStatus VI FUNC hpe650x_setSearchOutputTraceLength (instrumentlD. mezz_num.
target_trace length):

Example: See “To set up a search process” in Chapter 3.

hpe650x_setSearchResBWParameters

Use this command if you want ViSession instrumentID Index to the array maintained by
bandwidths <5 kHz in the the driver.
search process. Vilnt32 mezz_num Mezzanine used for search

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 use_ddc DDC number on mezzanine (DDC
0 only)
Vilnt32 res_bw_index DDC bandwidth. See the

setDigitallFBandwidth command
for bandwidth index numbers.

Vilnt32 fft_length Requested length of the FFT. The
range is 64 to 8,192 points.

Syntax: ViStatus VI FUNC hpc630x_setSearchResBWParameters (instrumentID. mezz_num. use_ddc.
res_bw_index, fft_length):

Example: See “To sct up a scarch process in Chapter 3.

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-23

Programming Command Reference
From search

Command/Action

hpe()SOx;setSearchResqution BwW

Sets the resolution bandwidth
for the search.

Supported Search
Resolution Bandwidths:

Index
Number

OCO~NOODAWN=O

10
11
12
13
14
15
16
17
18
19
20
21

Syntax:

Example:
ﬁpeéD;Ox_setSearcrhSpan

Specifies the start and stop
frequencies to be searched.

Syntax:

Data Type

ViSession instrument|D
Vilnt32 mezz_num
Viint32 res_bw_index
Bandwidth Index
Setting Number
668.75 kHz 22
334.38 kHz 23
167.19 kHz 24
83.594 kHz 25
41.797 kHz 26
20.898 kHz 27
10.45 kHz 28
5.225 kHz 29
49173 kHz 30
2.459 kHz 31
1.229 kHz 32
614.66 Hz 33
307.33 Hz 34
153.665 Hz 35
145.128 Hz 36
124.395 Hz 37
108.846 Hz . 38
96.752 Hz 39
87.077 Hz 40
79.161 Hz 41
72.564 Hz 42
66.982 Hz 43

See “To set up a search process™ in Chapter 3.

ViSession instrumentlD
Vilnt32

mezz_num
ViReal64 start_freq
ViReal64 stop_freq

start_freq. stop_freq):

Parameters

Index to the array maintained by
the driver.

Mezzanine used for search.
0 = mezzanine 1
1 = mezzanine 2

Index to BW table value must be 0
through 43 (44 possible values as
shown below).

Bandwidth
Setting
62.198 Hz
55.581 Hz
51.223 Hz
45.83 Hz
39.58 Hz
36.282 Hz
31.099 Hz
278 Hz
24 64 Hz
20.73 Hz
18.14 Hz
1476 Hz
11.46 Hz
9.86 Hz
8.215 Hz
6.698 Hz
4.92 Hz
4107 Hz
3.286 Hz
2.093 Hz
1.643 Hz
1.0884 Hz

ViStatus VI FUNC hpe650x_setSearchResolutionBW(instrumentID. mezz_num.
res_bw_index);

Index to the array maintained by
the driver.

Mezzanine used for search.
0 = mezzanine 1

1 = mezzanine 2

Start frequency (2 MHz).
Stop frequency (1 GHz or

3 GHz depending on installed
option).

ViStatus VI _FUNC hpe650x_setSearchSpan(instrumentID, mezz_num,

6-24 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From search

Command/Action Data Type Parameters

lilrpg()g()‘\{;sefsréarchTryper

Determines if internal DSP will ViSession instrumentiD Index to the array maintained by
perform data decimation, or the driver.

user's application will perform Vilnt32 mezz_num Mezzanine used for search.
data decimation. 0 = mezzanine 1

1 = mezzanine 2

search_type (= decimated video data
1 = undecimated video data
2 = no data/not supported

Vilnt32

Syntax: ViStatus VI_FUNC hpe630x_setSearchType(instrumentID. mezz _num. search_type):

hpe650x_startSearch

Starts the search process. ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine to be used for search.

0 = mezzanine 1
1 = mezzanine 2

Note: Mezzanine must be in search mode.

Syntax: ViStatus VI FUNC hpe650x_startSearch(instrument]D, mezz_num);
Example: See To setup a search process™ in Chapter 3.

hpcéSO;(_st(;[r)Sierarcﬁ

Stops the search process. ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine used for search.

0 = mezzanine 1
1 = mezzanine 2

Syntax: ViStatus VI FUNC hpe630x_stopSearch(instrumentID. mezz_num):
Example: See “To setup a search process™ in Chapter 3.

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-25

Programming Command Reference
From monitor

Parameters

Command/Action Data Type

From monitor

hpe6757(7);;17b0rtDataCoillee”ction 7 -
Aborts the multiple IF ViSession instrumentID
processor data collection

process. Vilnt32 mezz_num

Syntax:

Index to the array maintained by
the driver.

Mezzanine to be controlled.
0 = mezzanine 1
1 = mezzanine 2

ViStatus VI_FUNC hpe650x_abortDataCollection(instrument]D. mezz_num. hardwarc_reset):

EpeéidxiactivateAFC 7

Index to the array maintained by
the driver.

Mezzanine in which AFC is to
activated.

0 = mezzanine 1

1 = mezzanine 2

DDC in which AFC is to be
activated (0 through 4).

Activates automatic frequency ViSession instrumentID
control for the specified
mezzanine and DDC. Vilnt32 mezz num
Vilnt32 DDC num
Syntax: ViStatus VI _FUNC hpe650x_activate AFC(instrumentID. mezz_num. DDC_num):
Sec “To activate automatic frequency control™ in Chapter 3.
Example:

HﬁeéS0x»_activateAut0ranging

Activates the autoranging ViSession instrumentID
function for the specified IF
channel. On is the default Vilnt32 IFchan

setting.

Note:

Index to the array maintained by
the driver

|IF channel for communication
0 = IF channel 1
1 =IF channel 2

This command is called only once per setup. For example, if autoranging is activated

when the mezzanine is initialized, you do not need to call the function again when the
tuner is retuned.

Syntax:

See “To set up an FFT measurement™ in Chapter 3.

Example:

hpeéSOx__arlﬁDBCsForSynch roniiation

ViStatus_VI_FUNC hpe630x_activateAutoranging(instrumentID, [Fehan):

Prepares DDCs for multiple IF ViSession instrumentID

processor synchronization

process. Viint32 mezz_num
ViBoolean hardware_reset

Syntax:

Index to the array maintained by
the driver.

Mezzanine to be controlled

0 = mezzanine 1

1 = mezzanine 2

VI_TRUE indicates an external
device will provide trigger signal.

ViStatus_VI_FUNC hpe650x_armDDCsForSynchronization(instrumentID.
mezz_num, hardware_reset);

6-26 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Programming Command Reference
From monitor

Command/Action Data Type Parameters

hpé()'S'O')zéVrr'ﬁDSI;ForDataCollecfiof;

Prepares DSP for multiple |F ViSession instrumentlD Index to the array maintained by
processor synchronization the driver.
process. Vilnt32 mezz_num Mezzanine to be controlled

0 = mezzanine 1
1 = mezzanine 2

ViBoolean servant VI_TRUE indicates that the
specified mezzanine is a servant.

Syntax: ViStatus VI _FUNC hpe650x_armDSPForDataCollection(instrumentID. mezz_num. servant)

hpe650x_checkDDCsAvailable

Returns a vector of the ViSession instrumentID Index to the array maintained by
currently available DDCs and the driver.

the maximum bandwidth that Vilnt32 mezz_num Mezzanine that has the DDCs of
can be used. interest.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 chan_array[] The array address corresponding
to the available DDCs.
ViPInt32 max_bw_index Pointer to the address of the

allocated memory for the maximum
bandwidth setting.

Note: |[f the frequency is beyond the tuner’'s range, the command returns an error (some
considerations are made when tuning around a preselector band).

Syntax: ViStatus VI _FUNC hpe650x_checkDDCsAvailable(instrumentiD, mezz num, chan_array/].
&max_bw_index);

hpe650x_clearCaptu reDDCNurﬁ

Clears the specified DDC in the ViSession instrument|D Index to the array maintained by
1/Q data capture process. the driver.
Vilnt32 mezz, num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 DDC_num DDC number to clear (O through 4).

Note: « This command will be set for each DDC.
+ At least one DDC must be assigned for an I/Q capture process

Syntax: ViStatus_VI_FUNC hpe630x_clearCaptureDDCNum(instrumentID. mezz_num, DDC_pumy):

hpe6750x:deactivateA FC

Deactivates automatic ViSession instrument|D Index to the array maintained by

frequency control for the the driver.

specified mezzanine and DDC. v/jnt32 mezz_num Mezzanine in which AFC is to
deactivated.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 DDC_num DDC in which AFC is to
deactivated (0 through 4).

Syntax: ViStatus VI FUNC hpe650x_deactivate AFC(instrumentIDD. mezz_num, DDC_num);

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-27

Programming Command Reference
From monitor

Command/Action

hpe650x_disableAFC

Disables automatic frequency
control for the specified
mezzanine and DDC.

Syntax:

Data Type Parameters

ViSession instrumentlD Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine for which AFC is to be
disabled.
0 = mezzanine 1
1 = mezzanine 2

Vilnt32 DDC_num

DDC on mezzanine (0 through 4).
ViStatus VI FUNC hpe650x_disableAFC(instrumentID, mezz num, DDC num):

hpe650x_disableVCO

Disables clock VCO on slave
IF processor.

Syntax:

ViSession instrumentID Index to the array maintained by

the driver.

ViStatus VI FUNC hpe650x_disableVCO(instrument/ DY,

hpc6350x_enableAFC

Enables automatic frequency
control for the specified
mezzanine and DDC.

Syntax:

ViSession instrumentiD Index to the array maintained by
the driver.

Viint32 mezz_num Mezzanine for which AFC is to be
enabled.
0 = mezzanine 1
1 = mezzanine 2

Vilnt32

DDC_num DDC on mezzanine (0 through 4).
ViStatus VI _FUNC hpe650x_enable AFC(instrument!D, mezz_num, DDC num):

hpe630x_gangTuneDDC
Tunes all DDCs to the

specified frequency
simultaneously.

Note:
Syntax:

ViSession instrumentiD Index to the array maintained by

the driver.

mezz_num Mezzanine containing DDCs to be
tuned.
0 = mezzanine 1

1 = mezzanine 2

VI_TRUE will tune DDCs to
absolute frequency; VI_FALSE will
tune DDCs relative to antialiasing
filter.

Frequency setting for DDC 0O (£1/2
analog filter bandwidth).
Frequency setting for DDC 1 (£1/2
analog filter bandwidth).
Frequency setting for DDC 2 (£1/2
analog filter bandwidth).
Frequency setting for DDC 3 (£1/2
analog filter bandwidth).

Frequency setting for DDC 4 (£1/2
analog filter bandwidth).

Vilnt32

ViBoolean absolute

ViReal64 DDCOFrequency

ViReal64 DDC1Frequency

ViReal64 DDC2Frequency

ViReal64 DDC3Frequency

ViReal64 DDC4Frequency

This command minimizes command overhead by tuning all DDCs simultaneously.

ViStatus VI FUNC hpe650x_gangTuneDDC(instrumentlD), mezz num,

absolute, DDCOFrequency, DDC 1 Frequency, DDC2Frequency, DDC3Frequency,
DDC4Frequency);)

6-28 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Programming Command Reference
From monitor

Command/Action

hpc650x7getADCCIippinglndicator

Returns clipping state of an
ADC.

Syntax:

Data Type Parameters

ViSession instrumentID Index to the array maintained by
the driver.

Vilnt32 IFchan IF channel for communication
0 = IF channel 1
1 = IF channel 2

ViPBoolean overload VI_TRUE = ADC is clipping

VI_FALSE = ADC is not clipping
ViStatus_ VI FUNC hpe650x_getADCClippinglndicator(instrumentID. [Fchan, overload);

BbééthigetAutorangeStater

Reads complete autorange
state from an IF channel.

Syntax:

ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 IFchan |F channel for communication
0 = IF channel 1
1 = IF channel 2
ViPInt32 gain_profile Pointer to receiver gain profile
ViPInt32 gain_subprofile Pointer to receiver gain sub-profile
ViPInt32 sys_gain Pointer to receiver system gain

ViStatus_ VI FUNC hpe630x_getAutorangeState(instrumentID. IFchan, &gain_profile.
&gain_subprofile, &sys_gain):

hpe650x_getCaptureCollectinSRAM

Retrieves the capture state
corresponding to SRAM or
Linkport data capture.

Note:
Syntax:

ViSession instrumentiD Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine used for capture.
0 = mezzanine 1
1 = mezzanine 2

ViPBoolean collect_in_SRAM A pointer to a value indicating

VI_TRUE indicates capture data
will be stored in SRAM, otherwise it
will stream to the link port.

SRAM is a product option and must be installed for capture data to be stored in SRAM.
ViStatus_VI_FUNC hpe650x_getCaptureCollectInSRAM(instrumentID, mezz_num.
&collect_in SRAM):

hpﬁ;égdkAgetCabtu reDataDDCNum

Retrieves capture data from
DDC.

Syntax:

ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine used for capture.
0 = mezzanine 1
1 = mezzanine 2
Vilnt32 DDC_num Number of the DDC (0 through 4).
ViPBoolean active Pointer indicating whether the

specified DDC is active during
capture.

ViStatus_ VI _FUNC hpe6350x_getCapturcDataDDCNum(instrumentlD. mezz_num, DDC_num,
&active);

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-29

Programming Command Reference
From monitor

Command/Action Data Type Parameters

hpe650x getCaptureDataFormat

Retrieves whether 1/Q or full ViSession instrument|D Index to the array maintained by
rate data has been set. the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

ViPInt32 format Pointer to the address in memory
allocated for format state, either
digital I/Q or full rate ADC.

0 = Digital /Q
1=Full rate ADC

Syntax: ViStatus VI FUNC hpe650x_getCaptureDataFormat(instrumentID. meczz_num, &format):

hpe650x_getCaptureDataOutput

Retrieves the output to VXI bus ViSession instrumentiD Index to the array maintained by
or link ports. the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

ViPInt32 output Pointer to the address in memory
allocated for the output state, either
VXI, SRAM, or linkport.

0=VXI
1 = SRAM
2 = linkport

Syntax: ViStatus VI FUNC hpe650x_getCaptureDataOutput(instrumentID. mezz_num. &output):

hpe650x_getCaptureDigitallQData

Returns 1/Q data. ViSession instrumentID Index to the array maintained by
‘ the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

Vilnt16 IBufff] The array address passed by the
user into which the “I” data will be
passed.

Vilnt16 QBuUff[] The array address passed by the
user into which the “Q” data will be
passed.

ViPInt32 length Pointer to the length of the 1:Q
vectors (arrays). Their lengths are
equal.

Note: -« Returned data is interlaced. The IBuff[] array contains the following:

[1,DDC4, 1;DDC,, ... [;DDCy, ... 1,DDCy, 1,DDC,, ... 1L,DDCy, ... 1,DDC4, 1,DDC, ...
1,DDC 1.

See Table 3-14 and Scenario 1 sample code.

» This command returns data which is scaled to the output of the ADC. In order to scale
the number to that of the input voltage, the results must be multiplied by the result of
hpe650x_getDataCorrectionValue.

6-30 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From monitor

Command/Action Data Type Parameters

hpe650x getCaptureDataFormat

Retrieves whether 1/Q or full ViSession instrument|D Index to the array maintained by
rate data has been set. the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

ViPInt32 format Pointer to the address in memory
allocated for format state, either
digital I/Q or full rate ADC.

0 = Digital /Q
1=Full rate ADC

Syntax: ViStatus VI FUNC hpe650x_getCaptureDataFormat(instrumentID. meczz_num, &format):

hpe650x_getCaptureDataOutput

Retrieves the output to VXI bus ViSession instrumentiD Index to the array maintained by
or link ports. the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

ViPInt32 output Pointer to the address in memory
allocated for the output state, either
VXI, SRAM, or linkport.

0=VXI
1 = SRAM
2 = linkport

Syntax: ViStatus VI FUNC hpe650x_getCaptureDataOutput(instrumentID. mezz_num. &output):

hpe650x_getCaptureDigitallQData

Returns 1/Q data. ViSession instrumentID Index to the array maintained by
‘ the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

Vilnt16 IBufff] The array address passed by the
user into which the “I” data will be
passed.

Vilnt16 QBuUff[] The array address passed by the
user into which the “Q” data will be
passed.

ViPInt32 length Pointer to the length of the 1:Q
vectors (arrays). Their lengths are
equal.

Note: -« Returned data is interlaced. The IBuff[] array contains the following:

[1,DDC4, 1;DDC,, ... [;DDCy, ... 1,DDCy, 1,DDC,, ... 1L,DDCy, ... 1,DDC4, 1,DDC, ...
1,DDC 1.

See Table 3-14 and Scenario 1 sample code.

» This command returns data which is scaled to the output of the ADC. In order to scale
the number to that of the input voltage, the results must be multiplied by the result of
hpe650x_getDataCorrectionValue.

6-30 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From monitor

Command/Action Data Type Parameters

Syntax: ViStatus VI _FUNC hpe630x_getCaptureDigitallQData(instrumentlD, mezz_num. IBuff]].
QBufIT]. &length);

EﬁégVS()xggetCaptureFullRateADCData

Returns full rate data. ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

Vilnt16 ADCBuffer[] ADC data return array (unpacked).

ViPInt32 length Pointer to memory address
allocated for vector length.

Note: + See Table 3-16 and Scenario 14 sample code.
« This command returns data which is scaled to the output of the ADC. In order to scale
the number to that of the input voltage, the results must be multiplied by the result of
hpe650x_getDataCorrectionValue.

Syntax: ViStatus_ VI _FUNC hpe650x_getCaptureFullRateADCData(instrumentlD, mezz_num.
ADCBuffer|[], &length);

hpééSOxvgetCaptu reTrigger

Gets the number of trigger ViSession instrumentlD Index to the array maintained by
cycles expected when the driver.

streaming n-samples of ADC Vilnt32 mezz_num Mezzanine used for capture
data to the link port using 0 = mezzanine 1

multiple triggers (scenario 13), 1 = mezzanine 2

or n-samples of I/Q to Linkport

(scenario 8). hardware_trigger Pointer to the address of allocated

memory for the trigger status.

ViPBoolean

ViPInt32 trigger_cycles Pointer to the number of triggers
expected.

Syntax: ViStatus VI FUNC hpe650x_getCapturcTrigger(instrumentIDD. mezz_num. &trigger.
&trigger_cycles):

Epc()SOxﬁgetDataCorli-»ect.i(;nVaIue

Reads data correction value ViSession instrumentlD Index to the array maintained by

(linear) that normalizes the driver.

receiver gain. Vilnt32 mezz_num Mezzanine containing correction
value.

|
|

| 0= mezzanine 1
1 = mezzanine 2

Vilnt32 source 0—4,DDC1-5
5, ADC
ViPReal32 cor_value Pointer to the address in memory

allocated for the correction value.

Syntax: ViStatus VI FUNC hpe650x_getDataCorrectionValue(instrumentiD, mezz_num, source,
&cor value).

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-31

Programming Command Reference
From monitor

Command/Action
Ec6750x4get(rfu7rﬂrie;1tDémodType

Returns the current
demodulation mode for the
specified DDC and mezzanine
board.

FM=0
AM =1
Cw=2
UsB=3
LSB=4
PM =5

Note:
Syntax:

Example:

hpe650x_getDDCFrequency

Returns the frequency value of
the specified DDC.

Note:
Syntax:

Example:

Data Type Parameters

ViSession instrumentiD Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine which contains the
AFC.

0 = mezzanine 1
1 = mezzanine 2

DDC_num DDC index
DemodType Defines specified frequency as
absolute (true frequency) or
ViPInt32 relative (relative to the given
anti-aliasing filter bandwidth).

Vilnt32

Pointer to the address of allocated
memory for the returned frequency
of the DDC.

DDCs are tuned based on tuner frequency.

ViStatus VI_FUNC hpe650x_getCurrentDemodType(instrumentID, mezz_num, DDC_num,
& DemodType): Vilnt32 demodmode:

ret=hpe650x_getCurrentDemodType(instumentID. mezz, &demodmode);

ViSession instrumentID Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine which contains the
AFC.

0 = mezzanine 1
1 = mezzanine 2

Viint32 DDC_num DDC index

ViBoolean | absolute Defines specified frequency as
absolute (true frequency) or
relative (relative to the given
anti-aliasing filter bandwidth).

ViPreal64 freq Pointer to the address of allocated
memory for the returned frequency
of the DDC.

DDCs are tuned based on tuner frequency.

ViStatus_ VI FUNC hpe650x_getDDCFrequency(instrument!D, mezz_num, DDC _num, absolute,
&freq);

ViStatus ret;

Vilnt32 mezz=0, DDC=0;

ViBoolean absolute=1:

ViSession instrumentlD;

ret= hpe650x_getDDCFEFrequency(instrumentlD, mezz, DDC. absolute, & fHz;

6-32 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From monitor

Command/Action Data Type Parameters

hpe650x_getDigitall FBandwidth

Retrieves the bandwidth ViSession instrumentID Index to the array maintained by
setting for the specified the driver.
mezzanine board. Vilnt32 mezz_num Mezzanine from which the

bandwidth is to be retrieved.
0 = mezzanine 1
1 = mezzanine 2

ViPInt32 bandwidth_index Pointer to the address of allocated
memory for the value to which the
mezzanine is set (returned).

ViPReal64

bandwidth_hz Pointer to the address of allocated
memory for the physical bandwidth
setting (in Hz) to which the
mezzanine is set.

Syntax: ViStatus_ VI FUNC hpe650x_getDigitallFBandwidth(instrumentID, mezz_num,
bandwidth_index, &bandwidth hz):

hpe650x_getl FChannelForDDC

Returns the IF channe! ViSession instrumentID Index to the array maintained by

associated with a particular the driver.

bDC. Vilnt32 mezz_num Mezzanine that has the DDCs of
interest.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 DDC_num DDC number on mezzanine (0
through 4).
ViPInt32 IFchan Pointer to the address of allocated

memory for the IF channel routed
to the specified DDC or mezzanine.

Syntax: ViStatusf\‘/liFUNC hpe650x_getiFChannelForDDC(instrumentID, mezz num, DDC num,
&lFchan);

hpc650x_getMuItipléTriggerAction

Gets the capture mode so that ViSession instrumentlD Index to the array maintained by
multiple triggers are expected. the driver.
Vilnt32 mezz_num Mezzanine to be triggered.

0 = mezzanine 1
1 = mezzanine 2

ViPBoolean multiple Pointer to indicate that multiple
triggers wilt occur.

Syntax: ViStatus_ VI_FUNC hpe630x_getMultipleTriggerAction(instrument!D), mezz_num. &multiple):

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-33

Programming Command Reference
From monitor

Command/Action

BbcéSOxigetNum berOfSampl;s;F‘orCrfrqi)rtiufér

Retrieves the number of
samples that were captured.

Syntax:

Data Type Parameters

ViSession instrumentID Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine used for capture.
0= mezzanine 1
1 = mezzanine 2

ViPInt32 num_samples Pointer to the address in memory

allocated to the number of | and Q
samples that were captured.

ViStatus_VI_FUNC hpe650x_getNumberOfSamplesToCapture(instrument]ID, mezz_num,
&num_samples):

hpe630x_getRSSIvalue

Retrieves the corresponding
RSSI| measurement from the

specified mezzanine and DDC.

Note:

Syntax:

Example:

ViSession instrument|D Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine containing the DDC.
0 = mezzanine 1
1 = mezzanine 2
Viint32 chan DDC channel (0 through 4).
ViPReal64 rssi_val Pointer to the address of allocated

memory for the returned value.

+ DDC channel is mode-specific. By default, the mezzanine data select mode is #4.

+ There is a group delay of approximately 10 msec. Therefore, an RSSI reading cannot
be taken within the first 10 msec.

ViStatus_ VI FUNC hpe6350x_gctRSSIvalue(instrumentID, mezz num, chan, &rssi val):

See “To set up a channclized power measurement™ in Chapter 3.

ﬁpeﬁSOxgetSuspeﬁdedCaptureTask

Gets the suspended mode
indication. See the
hpe650x_set
SuspendedCapture

Task command.

Syntax:

hpe()S()xigetTunerF;quuency

Reports the value of the RF
frequency for a given IF
channel.

Syntax:

ViSession instrumentID Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine used for capture.
0 = mezzanine 1
1 = mezzanine 2

ViPBoolean suspended Pointer to a value of VI_TRUE

indicating capture will be started in
suspended mode, and started by a
trigger.

ViStatus_ VI_FUNC hpc650x_getSuspendedCaptureTask(instrumentiD, mezz_num.
&suspended);

ViSession instrumentlD Index to the array maintained by
the driver.

Vilnt32 IFchan IF channel for communication
0 = IF channel 1
1 =IF channel 2

ViPReal64 frequency pginter to the address of the

allocated memory for the frequency
value.

ViStatus VI_FUNC hpe6350x_getYunerFrequency(instrumentID, [Fchan, &frequency).

6-34 E6501A/E6502A/E6503A VX! Receiver User's Guide

Programming Command Reference
From monitor

Command/Action

hpc()’S})x;hiﬁrdSyrs}eﬁlReset

» Performs reset on IF
processor hardware.

» Group deemphasis
command.

Syntax:

Data Type Parameters

instrumentiD Index to the array maintained by

the driver.

ViSession

ViStatus_VI_FUNC hpe650x_hardSystemReset(instrumentIDY).

hpc()S0x>p}*earmDDCsF0rSyﬁéh ronization

« Performs prearm functions
prior to data collection.

+ Called before arming the
DDCs and DSP for capture.
Sets DSP state. See capture
examples in Chapter 3.

Syntax:

hpe65()xibrearmDSEforDataColléction

* Preforms prearm functions
prior to data collection

+ Called before arming the
DSP for capture. Sets DSP
state. See capture examples
in Chapter 3.

Syntax:

hpe65()xfselectBacilr(ipléner

Sets clock source to the VXI
back-plane.

Syntax:

ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine used for

synchronization.
0 = mezzanine 1
1 = mezzanine 2

ViStatus_ VI_FUNC hpe650x_prearmDDCsForSynchronization(instrumentlD. mezz_num).

ViSession instrumentiD Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

ViStatus VI_FUNC hpe650x_precarmDSPForDataCollection(instrumentlD. mezz_num):

ViSession instrumentID Index to the array maintained by

the driver.

ViStatus VI FUNC hpe650x_selectBackplaneFs(instrument1D).

hpé-()SOxfsetALERate

Sets the automatic level control
(ALC) for the audio output.
Controls both attack time and
decay time of the ALC.

Note:
Syntax:

instrument|D Index to the array maintained by

the driver.

Mezzanine for which ALC will be
changed.

0 = mezzanine 1

1 = mezzanine 2

ViSession

Vilnt32 mezz_num

Viint32 select 0 = change decay time

1 = adjust attack time

Vilnt32 Value to adjust ALC rate in

milliseconds (0.001 to 10,000).
This command applies only to SSB, ISB, USB, and LSB.

m_sec

ViStatus_VI_FUNC hpe630x_setALCRate(instrumentID, mezz_num, select, m_sec).

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-35

Programming Command Reference
From monitor

Command/Action

hpe()SOxisefAutorangeState

Sets complete autorange state
on an IF channel.

Note:

Syntax:

ViSession instrumentiD
Vilnt32 IFchan
Vilnt32 gain_profile
Vilnt32 gain_subprofile
Vilnt32 sys_gain

Data Type Parameters

Index to the array maintained by
the driver.

IF channel for communication
0 = IF channel 1
1 =IF channel 2

Receiver gain profile.
Receiver gain sub-profile.
Receiver system gain.

If you want to set the autorange state, you must first use the
hpe650x_getAutorangeState command to get the autorange state from a master |F.

ViStatus_VI_FUNC hpe650x_setAutorangeState(instrumentID. IFchan, gain_profile,

gain_subprofile. sys_gain);

hpe650x_setCaptu reCoIlectlnSkKM

Sets the captured 1/Q data to
either store in SRAM or stream
to the link port.

Note:

Syntax:

Example:

ViSession instrument|D
Vilnt32 mezz_num
ViBoolean collect_in_SRAM

Index to the array maintained by
the driver.

Mezzanine used for capture.
0= mezzanine 1
1 = mezzanine 2

Indicates whether data samples will
be stored in SRAM. A value of
VI_TRUE indicates capture data
will be stored in SRAM. Otherwise,
capture data will be streamed to
the link port.

= This must be enabled for captured | and Q data to be output to VXI bus.
+ SRAM is a product option and must be installed for capture data to be stored in SRAM.

ViStatus_VI_FUNC hpe650x_setCaptureCollectinSRAM(instrumentIDD, mezz_num,

collect_in SRAM):

See “To sct up digital 1/Q data output™ in Chapter 3.

hpc650xvset(£aptu reDataDDCNum

Sets DDC for capture process.

Syntax:

ViSession instrumentID
Vilnt32 mezz_num
Vilnt32 DDC num
ViBoolean active

Index to the array maintained by
the driver.

Mezzanine used for capture.
0 = mezzanine 1
1 = mezzanine 2

Number of the DDC (0 through 4).

VI_TRUE indicates that the
specified DDC will be used for
capture.

ViStatus_VI_FUNC hpe650x_setCaptureDataDDCNum(instrument!D). mezz_num. DDC_num,

active):

6-36 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From monitor

Command/Action Data Type Parameters

hpeéSOx!s&CaptureDataFormat

Sets either 1/Q or full rate data. ViSession instrument|D Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 format Digital /Q =0
Full rate ADC data = 1
Syntax: ViStatus VI FUNC hpe630x_sctCaptureDataFormat(instrumentlD. mezz_num. format):

Sce “To set up digital 1/Q data output™ in Chapter 3.
Example:

Hpe650x_setCaptureDataOutput

Sets the output to VXI bus or ViSession instrumentiD Index to the array maintained by
link ports. the driver.
Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 output Indicates whether output should go
to the VXI bus (0) or linkport (1).

Note: SRAM option must be installed and data collected in SRAM for output to VXI bus to be
valid.

Syntax: ViStatus_VI_FUNC hpe650x_setCaptureDataOutput(instrumentlD. mezz_num. output):
See ~To set up digital I/Q data output™ in Chapter 3.
Example:

hpe650W;T}iéger

Sets the number of trigger ViSession instrumentiD Index to the array maintained by
cycles expected when : the driver.

streaming n-samples of ADC Vilnt32

data to the link port using mezz_num Mezzanine used for capture.
multiple triggers (scenario 13), 0 = mezzanine 1

or n-samples of I/Q to Linkport 1 = mezzanine 2

(scenario 8).)
ViBoolean hardware_trigger VI_TRUE indicates an external

trigger; VI_FALSE indicates an
internal trigger.

Vilnt32 trigger_cycles Number of triggers expected.

Syntax: ViStatus VI _FUNC hpe650x_setCaptureTrigger(instrumentID. mezz_num. trigger,
trigger_cycles);

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-37

Programming Command Reference

From monitor

Command/Action

Hbc650x75§tDDC Frequency

Sets the DDC frequency by
absolute (the actual frequency
of interest) or to relative (the
frequency relative to the IF
bandwidth, which is centered
at 21.4 MHz).

Note:

Syntax:

ﬁpeéS()xisetDeemphasis

Enables 75 us FM
de-emphasis for audio.

Example:

Syntax:

ViSession

Vilnt32

Vilnt32

ViBoolean

ViReal64

Data Type

Parameters

instrumentiD

mezz_num

DDC_num

absolute

frequency

Index to the array maintained by
the driver.

Mezzanine selected
0 = mezzanine 1
1 = mezzanine 2

DDC number on mezzanine (0
through 4).

If VI_TRUE, defines specified
frequency as absolute (true
frequency) or, if VI_FALSE, relative
to the tuning frequency (the tuner
frequency is subtracted from the
“frequency” parameter).

Frequency setting (cannot exceed
+1/2 analog filter bandwidth).

The DDC frequency may be set relative to the IF channel tuned frequency or set to

absolute frequency.

ViStatus_VI_FUNC hpe650x_sctDDCFrequency(instrument!D, mezz_num, DDC_num, absolute,

frequency).

See “To set up an FF'I' measurement™ in Chapter 3.

ViSession

Vilnt32

ViBoolean

instrument|D

mezz_num

enabled

Index to the array maintained by
the driver.

Mezzanine used for deemphasis.
0 = mezzanine 1

1 = mezzanine 2

VI_TRUE enables and VI_FALSE
disables this function.

6-38 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Programming Command Reference

From monitor

Command/Action

Parameters

hpe630x_setDemodType

Sets the demodulation mode
for the specified DDC and
mezzanine board.

Syntax:

Example:

Data Type

ViSession instrumentID
Viint32 mezz_num
Vilnt32 DDC_num
Vilnt32 demod

Index to the array maintained by
the driver.

Mezzanine used for demodulation.
0 = mezzanine 1

1 = mezzanine 2

DDC on mezzanine (0 through 4).
Demodulation type.

FM=0

AM =1

cw=2

usSB =3

LSB=4

PM=5

ViStatus_VI_FUNC hpe650x_setDemodType(instrumentID, mezz num, DDC _num, demod).

cnum demodtypes {FM=0,AM.CW_USB,LSB.PM}:
demodtypes mode=AM;
Vilnt32 DDC=0, mezz=0:

ret= hpe630x_setDemodType(instrumentID, mezz, DDC, mode);

/*set DDC 0 on mezzanine 0 to AM*/

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-39

Programming Command Reference
From monitor

Command/Action

hpe650x_setDigitalIFBandwidth

Sets the digital IF bandwidth to
avalue specified by the passed
index for the specified
mezzanine.

Note:
Syntax:

Example:

Supported Digital IF

Bandwidths:

Data Type Parameters

ViSession instrumentlD Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine to be controlied.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 bandwidth_index Index corresponding to the
supported DDC bandwidth table.

All DDCs assume the same digital IF bandwidths per mezzanine except in Mode 3.

ViStatus_VI_FUNC hpe650x_setDigitalIFBandwidth(instrumentID, mezz_num,
bandwidth_index):

See “To set span in monitor mode™ in Chapter 3.

Index Bandwidth
Number Setting

247 Hz
493 Hz
740 Hz
1 kHz

2 kHz

3 kHz

5 kHz

6 kHz

10 kHz
12 kHz
15 kHz
20 kHz
25 kHz
29 kHz
34 kHz
44 kHz
54 kHz
64 kHz
74 kHz
83 kHz
93 kHz
109 kHz
123 kHz
138 kHz
154 kHz
171 kHz
187 kHz
201 kHz
218 kHz
238 kHz
262 kHz
291 kHz
327 kHz
374 kHz
436 kHz
462 kHz

-—
SCOOO~NOO D WN=O0

WWWWWRNNNNNNNNNNRNS S QG Qe
N PERWON 200N RARWN 20O ONOOOGA WN-

6-40 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From monitor

Command/Action

Data Type

gbééébxisetDROAttackTime

Sets the dynamic range
optimization (DRO) attack time.

Note:

Syntax:

Example:

hpe650x_setDRODecayTime

Sets the dynamic range

optimization (DRO) decay time.

Note:

Syntax:

Example:

ViSession

Vilnt32

Vilnt32

Parameters

instrumentID Index to the array maintained by
the driver.

IFchan IF channel for communication.
0 = IF channel 1
1 =IF channel 2

delay_units 2 to 2000 delay units.

- |If a peak signal level is above an upper threshold for a time equal to the attack time
setting, then the correction RAM is re-optimized.

« Avoids responding to every fluctuation in signal amplitudes.

ViStatus_VI_FUNC hpe630x_setDROAttack Time(instrumentID, [Fchan, delay_units):

See “To sct up dynamic range optimization™ in Chapter 3.

ViSession

Vilnt32

Vilnt32

instrument!D Index to the array maintained by
the driver.

IFchan IF channel for communication.
0 = IF channel 1.
1 =IF channel 2.

delay_units 2 to 2000 delay units.

cenl (P/2)1
Td = > 2K

k-0

« If a peak signal level is below a lower threshold for a time equal to the decay time
setting, then the correction RAM is re-optimized.

+ Avoids responding to every fluctuation in signal amplitudes.

ViStatus_VI_FUNC hpe650x_setDRODecay Time(instrument!D, [F-chan, delay_units):

See ~To set up dynamic range optimization™ in Chapter 3.

}717pe650xisetlFGain

Sets the overall gain of the IF
module; determines the correct
settings for the attenuators,
amplifiers, etc.

Note:
Syntax:

Example:

ViSession

Vilnt32

Vilnt32

instrumentID Index to the array maintained by

the driver.
IFchan IF channel for communication
0 = IF channel 1
1 = IF channel 2
gain Gain setting for the IF channel,

-48 dBm to 0 dBm in 2 dB steps.
Overrange from +2 dBm to
+12 dBm also available. Refer to
Table 3-12 for index numbers used
for setting gain.

If autoranging is on for this channel, then this gain setting is disabled.

ViStatus VI_FUNC hpe650x_setlFGain(instrument!ID, [Fchan, gain).

Sce “To set the I gain™ in Chapter 3.

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-41

Programming Command Reference
From monitor

Command/Action

hpe650x_setInterMezzanineAudio
Allows the routing of audio

from one mezzanine to the
other. Using the audio

breakout box, up to 10 audio
outputs are possible with two
mezzanines installed.

Syntax:

Data Type Parameters

ViSession instrumentlD Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine to be controlled.

0 = mezzanine 1
1 = mezzanine 2

ViBool enable Indicates whether to enable
iBoolean (VI_TRUE) or disable (VI_FALSE)
intermezzanine audio.

ViStatus VI FUNC hpe650x_setInterMezzanineAudio(instrumentID, mezz_num, enable);

hpe650x_setMasterlFClock

Sets the selected module as
the master IF processor and
will distribute its clock to the
back-plane.

Syntax:

ViSession instrumentID Index to the array maintained by
the driver.

ViStatus VI FUNC hpe650x_sctMasterlFClock(instrimentID):

hpe630x_setMultipleTriggerAction

Sets the capture mode so that
multiple triggers are expected.

Syntax:

ViSession instrumentID Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine to be triggered.

0= mezzanine 1
1 = mezzanine 2

ViBoolean multiple Indicates that multiple triggers will
occur.

ViStatus VI FUNC hpe650x_sctMultipleTriggerAction{instrumentiD. mezz_num, multiple):

Bbgésox_setNum berOfSamplesToCapture

Sets the number of samples to
capture or sets the capture
length to indefinite.

Note:

Syntax:

Example:

ViSession instrument|D index to the array maintained by
the driver.
Viint32 mezz_num Mezzanine used for capture.

0= mezzanine 1
1 = mezzanine 2

Vilnt32 num_samples Specifies the number of | and Q
samples that should be captured (1
to 1,048,576 for one DDC), or O for
indefinite.

+ If data is being captured to SRAM, amount of data captured is limited to available
memory.

+ If data is being streamed out of the link ports, then up to 281 1 samples are possible.

ViStatus_VI_FUNC hpe650x_sctNumberOfSamplesToCapture(instrumentlD. mezz_num.

num_samples);

See “To set up digital I/Q data output™ in Chapter 3.

6-42 EB6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From monitor

Command/Action

hpeéSO)g;EQIﬁSSIMeasTime
Sets the dwell time for all
DDCs when making received

signal strength indication
(RSSI).

Note:
Syntax:

Example:

hpe650x_setSlavel FClock

Sets the selected module as
the servant IF processor.

Syntax:

Data Type Parameters

ViSession instrumentlD Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine for which RSSI

measurement time is to be set.
0 = mezzanine 1
1 = mezzanine 2

Vilnt32 m_sec Dwell time in milliseconds (0.001 to
10,000).

Influences measured results tremendously.

ViStatus_ VI FUNC hpe650x_setRSSIMeasTime(instrument!D, mezz_num, m sec).

Sce ~To set up a channelized power measurement™ in Chapter 3.

ViSession instrumentlD Index to the array maintained by
the driver.

ViStatus VI_FUNC hpe650x_setSlavelFClock(instrumentID);

hpe()SO)’(;setSquelchLevel

Establishes the squelch level
for the audio output of the
specified mezzanine.

Note:
Syntax:

Example:

ViSession instrumentID Index to the array maintained by
the driver.
Viint32 mezz_num Mezzanine for which squelch is to

be adjusted.
0 = mezzanine 1
1 = mezzanine 2

Vilnt32 level Set squelch level in dBm
(20 dBm to 120 dBm).

Squelch level is established per mezzanine value.

ViStatus_ VI _FUNC hpe650x_setSquelchLevel(instrument!D, mezz_num, level):
See “To set up demodulation. turn on an audio channel. and set squelch™ in Chapter 3.

EbeGSOx_setSq l;éilrchSﬁ-l”te

Permits the user to enable or
disable the squelch for the
specified mezzanine.

Syntax:

Example:

ViSession instrumentlD Index to the array maintained by
the driver.
Vilnt32 mezz_num Mezzanine to be controlled.

0 = mezzanine 1
1= mezzanine 2

ViBoolean activate v| TRUE activates and VI_FALSE
deactivates squelch.

ViStatus_VI_FUNC hpc630x_sctSquelchState(instrument!D, mez=_num, activate). /*turn squelch
on for mezzanine 0*/

ret= hpe630x_setSquelchState(instrumentID, mezz. VI_TRUE):

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-43

Programming Command Reference
From monitor

Command/Action Data Type Parameters

hpcéSOxisetSuspendedCa"[')'tu reTask

Used to set whether capture ViSession instrumentID Index to the array maintained by
will be started in suspended the driver.
mode and started by a trigger. Vilnt32 mezz_num Mezzanine used for capture.

0 = mezzanine 1
1 = mezzanine 2

ViBoolean suspended A value of VI_TRUE indicates that
a trigger will start capture.

Syntax: ViStatus VI FUNC hpe6350x_setSuspendedCaptureTask(instrumentlD. mezz_num. suspended):

hib;GSOX_sederr;érFrequency

Sets the value of the RF ViSession instrumentlD Index to the array maintained by
frequency for a given IF the driver.
channel. Vilnt32 IFchan IF channel for communication

0 = IF channel 1
1 =IF channel 2
) frequency gets the frequency value
ViReal16 (2 MHz to 1 GHz, or 2 MHz to
3 GHz depending on the installed
option).

Syntax: ViStatus VI FUNC hpe650x_setTunerFrequency(instrumentID, If'chan, frequency).

hpeéSOx_setVohiméLevel

Sets the digital gain of the ViSession instrumentID Index to the array maintained by
audio process. the driver.
Vilnt32 mezz_num Mezzanine where the audio level
will be set.

0 = mezzanine 1
’ 1 = mezzanine 2
Vilnt32 DAChUM pAC for which the gain will be
adjusted (0 through 9).
ViReal64 volume_level v/gjye for volume level setting in
dB:

0 = maximum volume level
-50 = mute

Syntax: ViStatus_ VI FUNC hpe630x_sctVolumeLevel(instrumentID, mezz_num, DACnum,
volume level):

Example: Scc “To set up demodulation. turn on an audio channel, and set squelch™ in Chapter 3.

hpeésoxgstﬁrtCa[;tﬁlj; 7

Starts capture process based ViSession instrumentID Index to the array maintained by
on previously defined the driver.

parameters such as length and Vilnt32 mezz_num Mezzanine used for capture.
DDC number, etc. 0 = mezzanine 1

1 = mezzanine 2

Syntax: ViStatus_ VI FUNC hpe650x_startCapture(instrumentllD, mezz_num.);
Example: SeeTosetup digital I/Q data output™ in Chapter 3.

6-44 E6501A/E6502A/E6503A VXI Receiver User’s Guide

Programming Command Reference

From monitor

Command/Action Data Type Parameters
hpe650x_startDynamicRangeOptimization - -
Enables dynamic range ViSession instrumentiD Index to the array maintained by

optimization on an IF channel.
Vilnt32 IFchan

the driver.

IF channel selection for
optimization

0 = IF channel 1

1 =IF channel 2

Syntax: ViStatus_ VI FUNC hpe650x_startDynamicRangeOptimization(instrumentID. [Fchan);

hpe630x_startRSSI

Start measuring signal strength ViSession instrumentID

data on the specified

mezzanine and DDC. Vilnt32 mezz num
Vilnt32 DDC_num

Index to the array maintained by
the driver.

Mezzanine to be controlied.

0 = mezzanine 1

1= mezzanine 2

DDC used to measure signal
strength (O through 4).

Syntax: ViStatus VI FUNC hpe650x_startRSSI(instrumentID, mezz_num, DDC _num);

ret= hpe650x_startRSSI(instrumentlD, mezz, DDC);
Example:

hpe650x_stopCapture
Stops capture process. Must ViSession instrument|D
be run to end capture process.

Vilnt32 mezz_num

Syntax: ViStatus VI FUNC hpe650x_stopCapture(instrumentlD.
imi)ré()SOxjt'(;prDynamicRangeOptimization ' - 7
Disables dynamic range ViSession instrument|D
optimization on an IF channel.

Viint32 IFchan

Index to the array maintained by
the driver.

Mezzanine used for capture.
0 = mezzanine 1
1 = mezzanine 2

mezz_num);

Index to the array maintained by
the driver

IF channel selection for
optimization

0 = IF channel 1

1 =IF channel 2

Syntax: ViStatus VI FUNC hpe650x_stopDynamicRangeOptimization(instrumentlD.IFchan):

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-45

Programming Command Reference
From monitor

Command/Action Data Type Parameters

hpe630x_stopRSSI

Stops measuring signal ViSession instrumentID Index to the array maintained by
strength data on the specified the driver.
mezzanine and DDC., Vilnt32 meézZz_num Mezzanine to be controlled.

0 = mezzanine 1
1= mezzanine 2

Vilnt32 DDC_num DDC used to measure signal
strength (0 through 4).

Syntax: ViStatus VI FUNC hpe650x_stopRSSI(instrumentID, mezz_num, DDC num);
Sece “To sct up a channelized power measurement™ in Chapter 3.
Example:

hpcéSOxwturnOffAudioClrl;mnel

Deactivates the specified audio ViSession instrumentID Index to the array maintained by

channel (DAC) on the the driver.

mezzanine. Vilnt32 mezz_num Mezzanine that has the specified
DDC.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 DAC_num pAC channel number (0 through
9).

Syntax: ViStatus VI_FUNC hpe650x_turnOffAudioChannel(instrument!D, mezz num, DAC num):
ret= hpe650x_turnOffAudioChannel(instrumentlD. mezz, DAC):
Example:

hpe650x_tu rnOnA l;afoChannel

Activates the specified audio ViSession instrument!D Index to the array maintained by

channel (DAC) on the the driver.

mezzanine. Vilnt32 , mezz_num Mezzanine that has the specified
DDC.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 DDC_num DDC on mezzanine (0 through 4) to
use for demodulation.

Vilnt32 DAC_num DAC channel number (0 through
9).

Syntax: ViStatus VI _FUNC hpe630x_turnOnAudioChannel(instrument!D, mezz num, DAC num,
DDC num);

Example: Vilnt32 mezz=0. DDC=0. DAC=0:
ret= hpe630x turnOnAudioChannel(instrumentlD. mezz. DAC. DDC):

6-46 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference

From FFT
Command/Action Data Type Parameters
From FFT
Hbéééo*:g;{ffTFrechale 7
Returns the FFT frequency ViSession instrumentID Index to the array maintained by
scale as a vector. the driver.
Vilnt32 mezz_num Mezzanine from which to return the

FFT frequency scale.
0 = mezzanine 1

1 = mezzanine 2

Int32 '
viint3 process_num Process number. Maximum of four

FFT processes can be run (0
through 3).

Vilnt32 scale_type 0 = return absolute frequencies
1 = return purely offset frequencies
2 = return offset from IF
frequencies

ViReal64 freq_scale Returns vector with all frequency
points.

Syntax: ViStatus VI FUNC hpc650x_gctFFTFreqScale(instrumentl), mezz num, process_num,
scale type, freq scale):

Hpc650x7getFFTLength

Returns the length of the ViSession instrumentID Index to the array maintained by
process’ FFT length. the driver.
Vilnt32 mezz_num Mezzanine containing the DDC.

| 0 = mezzanine 1
1 = mezzanine 2

Vilnt32 process_num Process number. Maximum of four
FFT processes can be run (0
‘ through 3).
ViPInt32 length Pointer to the address of memory

allocated for FFT length.

Syntax: ViStatus_ VI_FUNC hpe650x_getFFTLength(instrumentiD, mezz num, process num, &length).

hpe()S()x_getFFTResolutionBW ~-

Returns the resolution ViSession instrumentID Index to the array maintained by
bandwidth used by the FFT. the driver.
Vilnt32 mezz_num Mezzanine from which resolution

bandwidth is returned.
0 = mezzanine 1
1 = mezzanine 2

Vilnt32 process_num Process number. Maximum of four
FFT processes can be run (0
through 3).

ViPReal64 res_bw Pointer to the address of memory
allocated for the resolution
bandwidth.

Syntax: ViStatus VI_FUNC hpe650x_getFFTResolutionBW(instrument/D, mezz_num, process _num,
&res _bw),

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-47

Programming Command Reference

From FFT
Command/Action Data Type Parameters
hpe650x_getFFTTrace i - -
Returns the amplitude trace ViSession instrumentlD Index to the array maintained by
data as a vector. the driver.
Vilnt32 mezz_num Mezzanine from which amplitude
will be returned.
0 = mezzanine 1
1 = mezzanine 2
Viint32 process_num Process number. Maximum of four
FFT processes can be run (0
through 3).
ViReal64 buff[] The array address passed by the

Note:
Syntax:

Example:

ilgéésax;géiFFTTraceLength
Returns the length of the trace
data vector.

Syntax:

Example:

user into which the amplitude trace
data will be passed.

Return code of -1 indicates FFT data is not ready yet. DSP is still processing.

ViStatus_ VI_FUNC hpe6350x_getFFTTrace(instrumentlD, mezz_num, process num, buff[]).
ViSession instrumentlD:

ViReal64 amp data[4096]:

Vilnt32 mezz=0, pid=0. DDC=0. length=4096;

ViStatus ret;

ret= hpe650x_sctFFTDDCNumber(instrumentID, mezz. pid, DDC):

ret= hpe650x_setFIFTLength(instrumentID. mezz, pid. length):
ret=="hpe650x_setReturn AlIFFTData(instrumentlD, mezz. pid. VI_FALSE):
ret= hpe6350x_startFF T (instrumentID. mezz. pid):

while {ret= hpe650x_getFF T Trace(instrumentID, mezz. pid. amp_data):}

(ret <0);

ViSession instrumentID Index to the array maintained by
the driver.

Vilnt32 mezz_num Mezzanine from which trace data
will be returned.
0 = mezzanine 1
1 = mezzanine 2

Vilnt32 process_num Process number. Maximum of four
FFT processes can be run (O
through 3).

ViPInt32 tracelength Pointer to trace length

ViStatus_VI_FUNC hpc650x_gctFFTTraccLength(instrument!D, mezz_num, process_num,
&tracelength);,

See “To set up an FFT measurement™ in Chapter 3.

6-48 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference

From FFT
Command/Action Data Type Parameters
hpe630x_setFFTAverages N - -
Sets the number of trace ViSession instrumentID Index to the array maintained by
averages performed by the the driver.
DSP code. Vilnt32 mezz_num Mezzanine on which to set number
of averages.
0 = mezzanine 1
1 = mezzanine 2
Vilnt32 process_num Process number. Maximum of four
FFT processes can be run (0
through 3).
Vilnt32 numOfAverages Specified number of averages (1 to
200).

Syntax: ViStatus VI FUNC hpe630x_setFI'TAverages(instrumentlD, mezz _num, process_num,
numOfdverages):.
Example: See “Tosctup an FFT measurement”™ in Chapter 3.

gbg&)SOxgsetFFTDDCNumber

Assigns a specified mezzanine ViSession instrumentID Index to the array maintained by
and DDC to an FFT process. the driver.
Vilnt32 mezz_num Mezzanine containing the DDC.

0 = mezzanine 1
1 = mezzanine 2

Vilnt32 process_num Process number. Maximum of four
FFT processes can be run (0
through 3).

Vilnt32 DDC_num DDC on mezzanine (0 through 4).

Note: There is a special case of using DDC #5 which indicates that the FFT will return full span
data.

Syntax: ViSlalusf\’/LFUNC hpe630x_setFFTDDCNumber(instrument/D, mezz num. process num,
DDC num);
Example: See “Tosctupan FFT measurement” in Chapter 3.

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-49

Programming Command Reference
From FFT

Command/Action

hpe650x_setFFT Length

Establishes the FFT length for
the specified process number.

Note:

Syntax:

Example:

hpe650x_setFFTWindowType
Sets the type of filter window
used by the FFT process.

Syntax:

Example:

Parameters

Data Type
ViSession instrumentiD
Vilnt32 mezz_num
process_num
Vilnt32
length
Vilnt32

Index to the array maintained by
the driver.

Mezzanine containing the DSP that
maintains this process number.

0 = mezzanine 1

1 = mezzanine 2

Process number. Maximum of four
FFT processes can be run (0
through 3).

Requested length of the FFT:
minimum = 64

See also “To sct up an FFT measurcment™ in Chapter 3.

maximum = 4096

Because the actual FFT length the driver passes to the DSP for processing can differ
from the selected value, you should also call hpe650x_gctFFTLength to determine the
actual FFT length passed to the DSP.

ViStatus_VI_FUNC hpe650x_sctFFTLength(instrumentID, mezz_num, process num, length):
See “To set up an FFT measurcment™ in Chapter 3.

Index to the array maintained by
the driver.

Mezzanine on which to set number
of averages.

0 = mezzanine 1

1 = mezzanine 2

ViSession instrument|D

Vilnt32 mezz_num

Process number. Maximum of four
FFT processes can be run (0
through 3).

Specified filter window.

0 = Hanning

1=Flat Top

2 = Rectangular

Vilnt32 process_num

Vilnt32 window_type

ViStatus VI_FUNC hpe650x_setFFTWindow Type(instrument!D, mez=_num, process num,
window_tvpe).

enum wintypes {Hanning=0, Flat. Rectangular}:

Vilnt32 mezz=0. pid=0.

ViSession InstrumentlD:

wintypes usewin= Hanning;

ret= hpe630x_setFIFTWindow Type(instrumentID), mezz, pid. usewin);

6-50 E6501A/E6502A/E6503A VXI Receiver User's Guide

Programming Command Reference
From FFT

Command/Action

hpe650x_setReturnAlIFFT Data

Indicates whether all data
about the FFT should be
returned in the trace, or just
frequency amplitude data.

Note:
Syntax:

Example:

Data Type

ViSession instrumentiD

Vilnt32

mezz_num Mezzanine from which trace data

Vilnt32

All data including the dither signal is returned.

Parameters

Index to the array maintained by
the driver.

will be returned.
0 = mezzanine 1
1 = mezzanine 2

FFT processes can be run (0
through 3).

ViStatus VI_FUNC hpe650x_setReturnAFF T Data(instrument!D, mezz_num,

process_num,returnAllData).

Sce “To sct up an FFT measurement™ in Chapter 3.

process_num Process number. Maximum of four

hpe630x_startFFT

Starts the FFT for the specified
process.

Syntax:

hpe65(&isfopFFT

Stops the FFT for the specified
process.

Syntax:

Example:

ViSession instrumentiD

Vilnt32

Vilnt32

Index to the array maintained by
the driver.

mezz_num Mezzanine used to perform FFT.

0 = mezzanine 1
1 = mezzanine 2

FFT processes can be run (0
through 3).

ViStatus VI FUNC hpe650x_startIFT(instrument/D, mez= _num, process nunt):

Sce “To set up an FFT measurement™ in Chapter 3.

Example:

ViSession instrumentID

Vilnt32

Vilnt32

Index to the array maintained by
the driver.

mezz_num Mezzanine used to perform FFT.

0 = mezzanine 1
1 = mezzanine 2

FFT processes can be run (0
through 3).

ViStatus_ VI FUNC hpe650x_stopFF T (instrumentID, mezz num, process num);

See “To sct up an FFT mcasurement™ in Chapter 3.

process_num Process number. Maximum of four

process_num Process number. Maximum of four

E6501A/E6502A/E6503A VXI Receiver User's Guide 6-51

Numerics

0 samples, capturing. 3-56

10 MHz reference. 4-6

10 MHz reference. turning off, 3-37
16 MHz Span, 3-21

16 MHz Stare. 3-18

Ist LO, 4-7

2nd LO. 4-6

4 MByte Data RAM, 5-10

A

accessories
E6401A, 1-29
16401 A option 001, 1-29
E6402A, 1-29
E6402A option 002, 1-29
E6403A. 1-29
E6404A, 1-30
E6404A options 031, 040. 1-30
static-safe, 2-2
ADC Output Data Rates, 3-7
ADC Sampling Rate, 5-7
adress switches, setting. 2-5
AFC Active. 3-19
AFC Tracking Range. 5-12
AFC, activating, 3-38
AGC, theory of, 4-13
ALC Attack Rate, 3-13
ALC Decay Rate, 3-13
ALC Range, 5-12
ALC Response Time, 5-12
AM Sensitivity, 5-6
Analog Filter, 3-22
analog filters, thcory of. 4-14
Analog Gain Control. 5-7

Analog IF Input Filter Bandwidths, 5-7

analog outputs. 3-7
antialiasing filters. 3-3
application functions. 6-5
arming DSP, 3-49
attack/decay, autoranging, 4-14
Attenuation, 3-23

audio breakout box. 3-7

audio channel. turning on, 3-41
audio connector, 3-8

Audio Controls (Mezz 1), 3-20
Audio Output Connector Type, 5-13
audio trigger, 3-8

Autorange. 3-23

autoranging attack/decay, 4-14

Index

Autoranging Gain Response Time, 5-7autoranging, benefits
of. 4-14

autoranging, locking, 3-38

autoranging, theory of, 4-13

B

Bandwidth of Digital 1Q Outputs, 5-10
BFO Control, 3-24

Blocking, 5-5

breakout box, 3-7

Bufferred Syne Rx, 2-9

bus timcout, 2-14

C

cable. MXI controller. 2-10

Calibration Interval. 5-18

capabilitics, receiver, 3-2

capability classes. 6-3

capture data, 3-57

Chan. 3-17

channclization. 3-5

channelized power. example of. 3-39

characteristics. definition of. 5-1

characteristics. windowing. 4-21

check operation. 2-19

clocks, distributing. 3-48

close instrument session. 3-28

commands

. 6-16.6-18
hpe650x_abortDataCollection. 6-27
hpe650x_activateAFC, 6-27
hpe650x_activatcAutoranging. 6-27
hpe650x_armDDCsForSynchronization, 6-27
hpe650x_armDSPForDataCollection, 6-28
hpe650x_autoConfigure, 6-11
hpe650x_checkDDCsAvailable, 6-28
hpc650x_clearCaptureDDCNum., 6-28
hpe650x_close, 6-11
hpe6350x_deactivateAFC, 6-29
hpe650x_disableAFFC. 6-29
hpe650x_disableVCO, 6-29
hpe650x_enableAFC. 6-29

hpe650x _error _query. 6-11
hpe650x_gangTuneDDC, 6-30
hpe650x_getActualScarchStoplreq, 6-21
hpe650x _getADCClippinglindicator, 6-30
hpe650x_gctAutorangeState, 6-30
hpe650x_getCaptureCollectInSRAM. 6-31
hpe650x_getCaptureDataDDCNum, 6-31
hpe6350x getCaptureDataFormat, 6-31 |

E6501A/E6502A/E6503A VXI Receiver User's Guide

Index-1

hpe650x_getCaptureDataOutput, 6-32
hpe650x_getCaptureDigitallQData. 6-32
hpe650x_getCaptureFullRateADCData. 6-33
hpe650x_getCaptureTrigger, 6-33, 6-37
hpe650x_getCurrentDemodType. 6-34
hpe650x_getDataCorrectionValue, 6-33
hpe650x_getDDCFrequency, 6-34
hpe650x_getDigitallFBandwidth, 6-35
hpe650x_getFFTBinWidth, 6-21
hpe650x_getFFTFreqScale. 6-49
hpe650x_getFFTLength, 6-49
hpe650x_getFFTResolutionBW, 6-49
hpe650x_getFFTTrace, 6-50
hpe650x_getFFTTracelength. 6-50
hpe650x getlF3dBBandwidth, 6-17
hpe650x_getlFAttenuator, 6-12
hpe650x_getlFChannelForDDC. 6-35
hpe650x_getMultipleTriggerAction, 6-35
hpe650x_getNumberOfActiveModules. 6-21
hpe650x_getNumberOfSamplesToCapture, 6-36
hpe650x_getRSSIvalue, 6-36
hpe650x_getSearchDectmationFactor, 6-21
hpe650x_getSearchFIFTLength. 6-22
hpe650x_getSearchIndexFrequency. 6-22
hpe650x_getSearchResolutionBW, 6-22
hpe650x_getScarchTrace. 6-23
hpe650x_getSearchTraceBlock, 6-23
hpe650x_getSearchracel.ength, 6-23
hpe650x_getSuspendedCapturelask. 6-36
hpe650x_getTunerFrequency, 6-37
hpe650x_getTunerTemperature, 6-12
hpe650x_hardSystemReset. 6-37
hpe650x_init, 6-13

hpe650x_initl*Channel, 6-17
hpe650x_precarmDSPForDataCollection. 6-37
hpe650x_readOptionString, 6-13
hpe650x_reset. 6-14

hpe650x_revision _query. 6-11, 6-14
hpe650x_sanityCheck, 6-14
hpe6350x_selectBackplaneks. 6-37
hpe650x_selectTunerlOMHzReference, 6-18
hpe650x_self test. 6-14
hpe650x_setAbsAmplitudeCalSignalCorr, 6-15
hpe650x_setAbsoluteAmplitude. 6-15
hpe650x_setALCRate. 6-38
hpe650x_setAnalogFilter. 6-16
hpe650x_setAutorangel.ock. 6-16
hpe650x_setAutorangeState, 6-38
hpe650x_setCaptureCollectinSRAM, 6-38
hpe650x_setCaptureDataDDCNum. 6-39
hpe650x_setCaptureDatal’'ormat, 6-39
hpe650x_setCapturcDataOutput, 6-39
hpe650x_setCaptureTrigger. 6-40
hpe650x_sctDDCFrequency, 6-40
hpe650x_sctDeemphasis. 6-40
hpe650x_setDefaultIFConfig. 6-18
hpe650x_setDemodType, 6-41
hpe650x_setDigitallFBandwidth, 6-42
hpe650x_setDitherState, 6-16
hpe650x_setDROAttack Time, 6-43

hpe630x_setDRODecay Time, 6-43
hpe650x_sctFF T Averages, 6-51
hpc650x_sctFFTDDCNumber, 6-51
hpe650x_sctFFTLength, 6-52
hpe650x_setlFFTWindowType, 6-52
hpe650x_setlFGain, 6-43
hpe650x_setInterMezzanineAudio. 6-44
hpe650x_setMasterlF, 6-44
hpe650x_setMezzanineDataSclectMode, 6-19
hpe650x_setMonitoringMode, 6-19
hpe650x_sctMultipleTriggerAction, 6-44
hpe650x_setNumberOfSamplesToCapture, 6-44
hpe650x_sctReturnAllFFTData, 6-53
hpe650x_setRSSIMeasTime, 6-45
hpe650x_sctSearchMode, 6-19
hpe650x_sctSearchOutputTracelength, 6-24
hpe650x_sctScarchResBWParameters, 6-24
hpe650x_setSearchResolutionBW, 6-25
hpe650x_setSearchSpan. 6-25
hpe650x_setSearchType. 6-26
hpe650x_setServantlk, 6-45
hpe650x_setSquelchl.evel, 6-45
hpe650x_setSquelchState, 6-45
hpe650x_setSuspendedCaptureTask, 6-46
hpe650x_setTunerAttenuation, 6-20
hpe650x_setTunerl'requency, 6-46
hpe650x_setVolumel.evel, 6-46
hpe650x_startCapture, 6-46, 6-47
hpe650x_startDynamicRangeOptimization. 6-47
hpe650x_startlFFT, 6-53

hpe630x_startRSSI. 6-47
hpe650x_startSearch. 6-26

hpe630x stopDynamicRangeOptimization. 6-47
hpe630x_stopl'T'T. 6-53

hpe6350x_stopRSSI. 6-48
hpe650x_stopSearch, 6-26

hpe650x turnOffAudioChannel. 6-48
hpe650x_turnOnAudioChannel. 6-48

common commands, 6-10
configuration

E6501A. 1-23
E63501A option 003. 1-24
E6502A, 1-25
E6502A option 003, 1-26
E6303A, 1-27
E6503A option 003, 1-28

configure function, 6-4
COR, 5-12

D

data collection, 3-57

common functions, 3-60
scenario 1. 3-63
scenario 10, 3-115
scenario 11, 3-120
scenario 12, 3-124
scenario 13, 3-129
scenario 14, 3-134

Index-2 E6501A/E6502A/E6503A VXI Receiver User’s Guide

scenario 15, 3-139

scenario 2, 3-68

scenario 3, 3-75

scenario 4, 3-81

scenario 5, 3-88

scenario 6, 3-94

scenario 7, 3-99

scenario 8, 3-103

scenario 9, 3-109
data format. captured, 3-51
data select mode, 3-3
dB/div. 3-22
DDC, 4-25
DDC Decimated Sample Rate, 5-10
DDC Freq (MHz), 3-19
DDC Resolution, 5-9
DDC synchronization, 3-47
DDC Tuning Range, 5-9
DDCs, synchronizing. 3-48
declaration of conformity, 5-22
De-emphasis, 3-19
default settings, 3-28
Demo.exe, 2-14
Demod Type. 3-19
demodulation

capabilities, 3-53

dependencies. 3-3

cxample of, 3-41

number of simultancous, 3-5
description

E6501A, 1-2

L6502A. 1-2

E63503A. 1-3
diagrams, programmers block. 3-25
Digital Bandwidth Shape Factor, 5-9
digital drop receiver, 3-3
digital IF bandwidth, 3-6
Digital IF Bandwidths, 5-9
digital IFF bandwidths. 3-3
Digital Output Interface. 5-10
digital outputs, 3-9
Dimensions, 5-16
distributing clocks, 3-48
driver revision, 3-28
DRO attack/decay. 4-16
DRO, RAM, DSP. 4-16
DRO, search mode, 4-17
DSP, 3-4
DSP loading. 3-27
DSP, arming. 3-49
DSP-based Demodulation, 5-4
DSP-based Detection Modes, 3-12
Dual Input IF Channel Isolation. 5-7
dynamic range optimization, 3-7

Dynamic Range Optimization Response Time, 5-9

dynamic range optimization, setting. 3-38
dynamic range optimization, theory of, 4-15

E

E6401A, detailed description, 4-4
E6402A option 002, 4-7
E6402A, detailed description, 4-6
E6403A, detailed description, 4-9
E6404A, detailed description, 4-11
E6501A configuration, 1-23
E6501A option 003 configuration. 1-24
E6502A configuration, 1-25
E6502A option 003 configuration. 1-26
E6503A configuration, 1-27
E6503A option 003 configuration, 1-28
ECL, 2-8
EMC. 5-19
Enable DAC, 3-19
Enable IF Reference Out, 3-14
cquipment, test, 2-19
ESD (clectrostatic discharge). 2-2
examples
10 MHz reference, turning off. 3-37
AFC, activating. 3-38
audio channel, turning on. 3-41
channelized power, 3-39
demodulation, 3-41
dynamic range optimization, setting up, 3-38
IFFT measurement, 3-33
IF bandpass filter, setting. 3-34
IF gain, setting, 3-35
lock autoranging. 3-38
mezzanine data select mode. setting. 3-37
monitor process. 3-40
multi-threading. 3-42
scarch mode RBW, setting. 3-36
scarch process, 3-31
span. setting in monitor mode, 3-36
squelch. setting, 3-41
tuner attenuation. setting. 3-36
tuner frequency. 3-34
Exit, 3-12
External, 3-13
External Cable and Audio Breakout Box, 5-13

F

FFT commands. 6-10

FFI' measurements
algorithm, 4-19
background, 4-18
example of, 3-33
IF pan windows, RBW, 4-22
maximum FFT length, 3-26
maximum FF'1 processes, 3-26
monitor mode, 3-3
process, 4-19
properties, 4-18
resolution bandwidth range, 4-21
resolution bandwidths, 4-22
stepped, 4-19

E6501A/E6502A/E6503A VX1 Receiver User's Guide

Index-3

windowing. 4-20
File menu. 3-12
files. list of installation. 2-14
Filter Frequency Range, 5-3
filters, analog, 4-14
flat top. 4-21
FM De-emphasis, 5-12
FM Sensitivity, 5-6
format. captured data, 3-51
frequency range, 5-2
frequency translations, 4-10
Front Panel Connectors, 5-14
front panel features

E6401A, 1-7

E6402 A option 002, 1-11

E6402A. 1-9

E6403A, 1-13

E6404A. 1-15

E6404A options 022, 040, 1-20

E6404A options 031. 040. 1-17
full rate digitized data, 3-9
Full Span. 3-22
full span spectral display. 3-3
Full Span Start Freq. 3-21
Full Span Stop Freq. 3-21

G

Gain. 3-23

gain control, 3-7

gain settings, IF, 3-35
gain, processing, 4-15
group 0 commands. 3-25
group | commands, 3-25
group 2 commands, 3-235
group 3 commands, 3-25
group 4 commands, 3-25
group 5 commands, 3-25
group numbers, 3-25

H

Hanning, 4-21

hardware configuration, synchronization, 3-46
hardware installation. 2-9

hardware trigger, 3-47

Harmonic Distortion, 5-8

hpe650x.dll, 2-14

hpe650x.exp, 2-14

hpe650x.h, 2-14

hpe650x.hlp, 2-14

hpe650x.1ib, 2-14
hpe650x_abortDataCollection. 6-27
hpe650x_activatcAFC, 6-27
hpe650x_activatcAutoranging, 6-27
hpe650x_armDDCsForSynchronization, 6-27
hpe650x_armDSPForDataCollection, 6-28
hpe650x_autoConfigure, 6-11

hpe650x_checkDDCsAvailable. 6-28
hpe630x_clearCaptureDDCNum. 6-28
hpe650x_close. 6-11
hpe650x_dcactivatcAFC, 6-29
hpe650x_disableAFC, 6-29
hpe650x_disableVCO, 6-29
hpe650x_enableAFC, 6-29

hpe630x_error query, 6-11
hpe650x_gangTuneDDC, 6-30
hpe650x_getActualScarchStopFreq, 6-21
hpe650x_getADCClippingIndicator, 6-30
hpe650x_getAutorangeState. 6-30
hpe650x_getCaptureCollectinSRAM. 6-31
hpe650x_getCaptureDataDDCNum, 6-31
hpe650x_getCapturcDataFormat. 6-31
hpe650x_getCaptureDataOutput, 6-32
hpe650x_getCaptureDigitallQData, 6-32
hpe650x_getCapturcFullRateADCData, 6-33
hpe650x_getCapturcTrigger, 6-33, 6-37
hpe650x_getCurrentDemodType. 6-34
hpe650x_getDataCorrectionValue, 6-33
hpe650x_getDDCFrequency. 6-34
hpe650x_getDigitallFBandwidth, 6-35
hpe650x_getFFTBinWidth, 6-21
hpe650x_getFFTFreqScale. 6-49
hpe650x_getFFTLength. 6-49
hpe650x_getlFTResolutionBW. 6-49
hpe650x_getFIF T Trace. 6-50
hpe650x_getFF 1 TraceLength, 6-50
hpe650x_getlF3dBBandwidth. 6-17
hpe630x_getlFAttenuator. 6-12
hpe630x_getiFChannelForDDC. 6-35
hpe650x_getMultipleTriggerAction. 6-35
hpe630x_getNumberOfActiveModules, 6-21
hpe650x_getNumberOfSamplesToCapture. 6-36
hpe650x_getRSSlvalue. 6-36
hpe650x_getSearchDecimationFactor, 6-21
hpe650x_getSearchFFTLength, 6-22
hpe650x_getSearchIndexFrequency, 6-22
hpe650x_getSearchResolutionBW. 6-22
hpe650x_getSearch'lrace. 6-23
hpe650x_getSearchTraceBlock, 6-23
hpe650x_getSearchTracelength, 6-23
hpe650x_getSuspendedCapturcTask. 6-36
hpe650x_getTunerFrequency. 6-37
hpe650x_getTunerTemperature, 6-12
hpe650x hardSystemReset, 6-37

hpe650x init. 6-13

hpe650x_initlFChannel, 6-17
hpe650x_prearmDSPForDataCollection. 6-37
hpe650x_rcadOptionString, 6-13
hpe650x_reset. 6-14
hpe650x_revision_query. 6-11, 6-14
hpe650x_sanityCheck. 6-14
hpe650x_selectBackplaneFs. 6-37
hpe650x_select TunertOMHzReference, 6-18
hpe650x_sclf test, 6-14
hpe650x_setAbsAmplitudeCalSignalCorr, 6-15
hpe650x_sctAbsAmplitudeTempComp, 6-13
hpe650x_setAbsoluteAmplitude, 6-15

Index-4 E6501A/E6502A/E6503A VXI Receiver User’s Guide

hpe650x_setALCRate, 6-38
hpe650x_setAnalogFilter, 6-16
hpe650x_sctAutorangel.ock, 6-16
hpe650x_sctAutorangeState, 6-38
hpe650x_setCaptureCollectinSRAM, 6-38
hpe650x_setCaptureDataDDCNum, 6-39
hpe650x_setCaptureDataFormat, 6-39
hpe650x_setCaptureDataOutput, 6-39
hpe650x_setCaptureTrigger, 6-40
hpe650x_setDDCFrequency, 6-40
hpe650x_setDeemphasis. 6-40
hpe650x_setDefault]FConfig, 6-18
hpe650x_setDemodType, 6-41
hpe650x_sctDigitallFBandwidth, 6-42
hpe650x_setDitherState, 6-16
hpe650x_sctDROAttack Time, 6-43
hpe650x_sctDRODecayTime, 6-43
hpe650x_setFFTAverages, 6-51
hpe650x_setFFTDDCNumber, 6-51
hpe650x_setFFTLength, 6-52
hpe630x_setFFTWindowType, 6-52
hpe650x_setlF10MHzRceferenceOut, 6-18
hpe650x_setlFGain, 6-43
hpe650x_sctinterMezzanineAudio. 6-44
hpe650x_setMasterlF. 6-44
hpe650x_setMezzanineDataSelectMode. 6-19
hpe650x_setMonitoringMode. 6-19
hpe650x_setMultipleTriggerAction, 6-44
hpe650x_sctNumberOfSamplesToCapture, 6-44
hpe650x_setReturnAllFFTData, 6-53
hpe650x_sctRSSIMcasTime., 6-45
hpe650x_setScarchMode. 6-19
hpe650x_setSearchOutputTraccLength, 6-24
hpe650x_setSearchResBWParameters. 6-24
hpe650x_setSearchResolutionBW. 6-25
hpe650x_setSearchSpan, 6-25
hpe650x_setSearchType. 6-26
hpe650x_setServantlF. 6-45
hpe650x_sctSquelchLevel. 6-45
hpe650x_sctSquelchState. 6-45
hpe650x_sctSuspendedCaptureTask, 6-46
hpe650x_setTunerAttenuation, 6-20
hpe650x_setTunerFrequency, 6-46
hpe630x_setVolumelevel. 6-46
hpe650x_startCapture. 6-46. 6-47
hpe650x_startDynamicRangeOptimization, 6-47
hpe650x_startFI'T, 6-53
hpc650x_startRSSIL. 6-47
hpe650x_startScarch, 6-26
hpe650x_stopDynamicRangeOptimization. 6-47
hpe650x_stopFFT, 6-53
hpe650x_stopRSSI. 6-48
hpe650x_stopSearch, 6-26
hpe650x_turnOffAudioChannel, 6-48
hpe650x_turnOnAudioChannel, 6-48
Humidity, 5-19

I

1/Q data, 3-9
IF bandpass filter, setting. 3-34
I bandwidth, 3-19
IF Channel Controls, 3-22
IF gain settings. 3-35
IF Rejection, 5-3
Image Rejection. 5-5
Input Range Settings, 5-7
Input VSWR, 5-4
installation
hardware, 2-9
MXI cable, 2-10
software, 2-14
installation files, 2-14
Instrument Preset, 3-12
Inter mezzanine audio, 3-19
Intermodulation, 5-5
Internal, 3-13
Internal Timebase Adjustment Interval, 5-18
Internally Generated Spurious. 5-5
Internally Generated Spurious Responses, 5-8

L

Layout menu. 3-14

length. maximum FIT. 3-26

Link Port Connector Type. 5-10
Link Port Output Data Rate. 3-10
link port pin orientation. 3-9

LO Emissions, 5-3

loading weight. 3-28

local bus, 2-8

local bus switch. scttings for synchronization. 3-47
lockout key. 2-8

logical address switches, setting, 2-5

M
mainframes, VXI. 1-22
Marker, 3-18

master [FP, 3-47
Maximum Audio Output, 5-13
Maximum Input without Damage, 5-4

Maximum Realtime Demodulated Bandwidth, 3-12

measure capability class, 6-4
memory pointers, 3-31
Mezz. 1 Controls, 3-18
Mezzanine, 4-25
Meczzanine 1, 2, 3-18
mezzanine assembly, theory of, 4-11
mczzanine data select mode
general description, 3-3
setting, 3-37
Mezzanine menu, 3-14
mode 1, 3-25
mode 1,2, 3, 4. 3-13

E6501A/E6502A/E6503A VXI Receiver User's Guide

Index-5

mode 2. 3-25

mode 3. 3-25

mode 4. 3-25

Module Size, 5-20

monitor commands, 6-10

monitor mode, 3-2

monitor process. setting up and starting, 3-40
multiple IFPs, synchronization. 3-46
multi-threading, 3-42

MXI cable. installing. 2-10

N

New Spectral Display. 3-16

Noisc Figure, 3-5

Number of Digital Downconverters, 5-9
Number of Digital 1Q Outputs. 5-10
Number of Simultancous Channels, 5-13

Number of Simultancous Demodulated Signals per

Mezzanine, 5-12

Number of Simultancous Digital I/Q Outputs, 5-10

Number of simultaneous 1/Q outputs. 5-11
Nyquist. 4-18

O

0CXO0. 4-6

Off/On. 3-17.3-22

open instrument session. 3-28
Open menu, 3-16

Operating Temperature, 3-19
operation, checking, 2-19
options, adding functionality, 1-4
Output Bandwidth, 5-10, 5-12
Output Interface. 5-10

Overall Gain Control Range. 5-7
Overall Receiver Sweep Speed. 5-2

P

Phasc Noise, 3-5

pin numbers, link port, 3-9
plug and play commands. 6-10
pointers, 6-10

pointers. memory, 3-31

Power Requirements, 5-17
Preselector Band, 5-3
preselector bands, 4-3
processes, maximum FFT. 3-26
processing gain, 4-15
programmer block diagram, 3-25

R

read function. 6-4
Reciprocal Mixing. 5-3

requirements, system, 2-13

Res. BW, 3-21

Res. BW Averages dB/div, 3-17
Reset DDCs. 3-19

resource manager, running, 2-15
return values, 3-31, 6-6

return values, special cases. 6-9
revision, driver, 3-28

RF Input Attenuation. 5-4

RF Input Connector, 5-4

RF Input Impedance, 5-4

route class, 6-5

LRSSI for Mezzanine 1. 3-20 |
RSSI Meas. Time, 3-13

S

samples, capturing 0, 3-56
Save Current Layout. 3-12
search commands. 6-10
Search Controls for Mezzanine 1. 3-20
Search Display for Mczzanine 1. 3-22
search mode. 3-4
search mode RBW, sctting., 3-36
search process, example of, 3-31
search rate, 3-4
Sensitivity, 5-5
sensitivity. using FFTs. 4-22
kerial loading 3271
servant module, 3-47
session, opcning/closing. 3-28
sctting address switches. 2-5
Settings menu. 3-12
settings. default, 3-28
shape factor, 4-21
Shock. 3-19
shortcut menu, 3-17
Signal-to-Noise Ratio. 3-8
Simultaneous Demods. 5-4
Slots Used, 5-20
software configuration, sychronization. 3-47
software trigger, 3-47
software, installing. 2-14
sole module. DDC synchronization, 3-47
Span, 3-21
span. setting in monitor mode. 3-36
specifications
4 MByte Data RAM. 5-10
ADC Qutput Data Rates, 5-7
ADC Sampling Rate, 5-7
AFC Tracking Range, 5-12
ALC Range, 5-12
ALC Response Time, 5-12
AM Sensitivity, 5-6
Analog Gain Control, 5-7
Analog IF Input Filter Bandwidths, 5-7
Audio Output Connector Type, 5-13
Autoranging Gain Response Time, 5-7
Bandwidth of Digital IQ Outputs, 5-10

Index-6 E6501A/E6502A/E6503A VXI Receiver User's Guide

Blocking, 3-5

Calibration Interval. 5-18

COR. 5-12

DDC Decimated Sample Rate, 5-10

DDC Resolution, 5-9

DDC Tuning Range, 5-9

Declaration of Conformity, 5-22

definition of, 3-1

Digital Bandwidth Shape Factor, 5-9

Digital IF Bandwidths, 5-9

Digital Output Interface, 5-10

Dimensions, 5-16

DSP-based Demodulation, 5-4

DSP-based Detection Modes, 5-12

Dual Input IF Channel Isolation, 5-7

Dynamic Range Optimization Response Time, 5-9

EMC. 5-19

External Cable and Audio Breakout Box. 5-13

Filter Frequency Range. 5-3

FM De-emphasis. 5-12

FM Sensitivity, 5-6

frequency range. 5-2

Front Panel Connectors, 5-14

Harmonic Distortion, 3-8

Humidity. 5-19

IF Rejection, 3-5

Image Rejection, 5-5

[nput Range Settings, 5-7

[nput VSWR, 5-4

Intermodulation, 3-5

Internal Timebase Adjustment Interval, 5-18

Internally Generated Spurious, 5-5

Internally Generated Spurious Responses, 5-8

Link Port Connector Type. 5-10

Link Port Output Data Rate. 5-10

L.O Emissions. 5-5

Maximum Audio Output, 5-13

Maximum Input without Damage, 5-4

Maximum Realtime Demodulated Bandwidth, 35-12

Module Size, 5-20

Noise Figure. 5-5

Number of Digital Downconverters, 5-9

Number of Digital 1Q Outputs, 5-10

Number of Simultaneous Channels. 5-13

Number of Simultaneous Demodulated Signals per
Mezzanine, 5-12

Number of Simultaneous Digital 1/Q Outputs, 5-10

Opcrating Temperature, 5-19

Output Bandwidth, 3-10, 5-12

Output Interface, 5-10

Overall Gain Control Range, 5-7

Phase Noise, 5-5

Power Requirements. 5-17

Preselector Band, 5-3

Reciprocal Mixing, 3-5

RF Input Attenuation, 5-4

RF Input Connector. 5-4

RF Input Impedance, 5-4

Sensitivity, 5-5

Shock. 3-19

Signal-to-Noisc Ratio.
Simultaneous Demods,
Slots Used, 5-20
Spurious Responses, 5-8
Squelch Range. 5-12
Storage Temperature, 5-19
Synthesizer Tuning Speed. 5-2
Trigger Input, 5-13
Trigger Output, 5-13
tuning resolution, 5-2
Vibration, 5-19
VXI Control. 5-20
VXI Interface. 5-20
Warranty, 5-18
Weight, 5-15
Spurious Responses, 5-8
Squelch Range, 5-12
squelch, setting, 3-41
Start Freq, 3-21
static-safe accessories, 2-2
Step Size, 3-23
Stop Freq, 3-21
Storage Temperature. 5-19
switch settings. local bus. 2-9
Sync Tx, 2-9
synchronization, multiple [FPs. 3-46
Synthesizer Tuning Speed, 5-2
system requirements, 2-13

5-8
5-4

T

Terminal Sync Rx, 2-9

test equipment. 2-19

test operation, 2-19

timeout. configuring VXI bus, 2-15
top logo base. 2-8

Trigger Input. 3-13

Trigger Output, 5-13

trigger, audio, 3-8

trigger. software/hardware, 3-47
TTL. 2-8

Tune IF Chan 1. 3-21

Tune Select. 3-19

tuner attenuation, setting. 3-36
Tuner Controls. 3-23

Tuner Freq. 3-23

tuner frequency, example of, 3-34
Tuning Accuracy. 5-2

tuning resolution, 5-2

Turbo Speed. 3-18

typical, definition of, 5-1

U

UnBufferred Sync Rx, 2-9
uniform, 4-21
UNIX operation, 2-13

E6501A/E6502A/E6503A VXI Receiver User's Guide

Index-7

\%

VCO. 4-6

Vibration, 5-19

View, 3-21

virtual front pancl
16 MHz Span. 3-21
16 MHz Stare, 3-18
AFC Active, 3-19
ALC Attack Rate, 3-13
ALC Decay Rate, 3-13
Analog Filter, 3-22
Attenuation, 3-23
Audio Controls (Mezz 1), 3-20
Autorange, 3-23
BFO Control. 3-24
Chan, 3-17
dB/div, 3-22
DDC Ireq (MHz). 3-19
De-emphasis, 3-19
Demod Type, 3-19
Enable DAC, 3-19
Enable IF Reference Out. 3-14
Exit, 3-12
External, 3-13
File menu, 3-12
Full Span, 3-22
Full Span Start Freq, 3-21
Full Span Stop Freq, 3-21
Gain, 3-23
IF bandwidth, 3-19
IF Channel Controls, 3-22
Instrument Preset, 3-12
Inter mezzanine audio, 3-19
Internal, 3-13
Layout menu. 3-14
Marker, 3-18
Mezz. 1 Controls. 3-18
Mezzanine 1, 2, 3-18
Mezzanine menu, 3-14
mode 1, 2. 3,4, 3-13
New Spectral Display, 3-16
Off/On, 3-17, 3-22
Open menu, 3-16
Res. BW, 3-21

Res. BW Averages dB/div. 3-17

Reset DDCs, 3-19

RSSI for Mezzanine 1. 3-20
RSSI Meas. Time, 3-13
Save Current Layout, 3-12

Search Controls for Mezzanine 1, 3-20
Search Display for Mezzanine 1, 3-22

secarch window. 3-4
Settings menu, 3-12
shortcut menu, 3-17
Span, 3-21

Start Freq, 3-21
starting, 2-15

Step Size, 3-23
Stop Freq, 3-21

Tune [F Chan 1, 3-21
Tunc Select. 3-19
Tuner Controls, 3-23
Tuner Freq, 3-23
Turbo Speed. 3-18
View, 3-21
Window menu, 3-24
Window Type, 3-18
VISA library, 6-2
VXI bus timeout, 2-14
VXI Control, 5-20
VXI Interface, 5-20
VXI mainframes
option 006, 1-22
option 013, 1-22

W

Warranty, 5-18

window characteristics, 4-21
Window menu, 3-24
Window Type, 3-18
windowing, 4-20

Index-8 E6501A/E6502A/E6503A VXI Receiver User’s Guide

	Title Page
	Notice
	Warranty
	Service and Support
	Safety and Regulatory Information
	Typeface Conventions
	What You'll Find in This Manual
	Table of Contents
	1. Product Description and Configurations
	Introducing the E6501A/E6502A/E6503A VXI Receivers
	E6501A VXI Receiver
	E6502A VXI Receiver
	E6503A VXI Receiver

	Receiver Options
	Initial Inspection
	Front-Panel Features
	E6401A 20-1000 MHz Downconverter
	E6402A Local Oscillator
	E6402A Option 002 Local Oscillator with Dual Outputs
	E6403A 1000-3000 MHz Block Downconverter
	E6404A IF Processor
	E6404A Option 031, 040 IF Processor
	E6404A Option 022, 040 IF Processor

	Standard Receiver Configurations
	E650XA Mainframe Options
	E6501A Configuration
	E6501A Option 003 Configuration
	E6502A Configuration
	E6502A Option 003 Configuration
	E6503A Configuration
	E6503A Option 003 Configuration

	Accessories Supplied

	2. Getting Started
	Electrostatic Discharge Information
	Preparation for Use
	Setting the Logical Address Switches
	Local Bus Compatibility
	Installing the Receiver
	Cabling the Receiver
	Installing the MXI Controller Cable
	Configuring a Multiple Mainframe System
	PC or UNIX Workstation System Requirements
	Installing the Software
	Configuring the VXI BUS Timeout
	Starting the Virtual Front Panel

	Checking Operation
	Procedure

	3. Using the Receiver
	E650XA VXI Receiver Overview
	Core Receiver Capabilities
	Receiver Capabilities By Configuration

	Using the Virtual Front Panel
	File Menu
	Settings Menu
	Layout Menu
	Mezzanine Menu
	Open Menu
	Window Menu

	Using The Driver Software
	Programmer's Block Diagrams
	Mezzanine Data Select Modes
	Command Group Numbers
	Maximum FFT Length
	Maximum Number of FFT Processes
	DSP Considerations
	Driver Revision
	Default Receiver Settings
	Opening and Closing an Instrument Session
	Return Values
	Pointers to Memory Addresses
	Receiver Programming Examples
	Multi-Threading Considerations

	Synchronizing Multiple IF Processors and Capturing Data
	Hardware Configuration
	Software Configuration
	Captured Data Format
	Sending Indefinite Samples
	Data Collection Programming Examples

	4. Theory of Operation
	E6501A/E6502A/E6503A VXI Receiver Description
	Preselector Bands

	E6401A 20 to 1000 MHz Downconverter Operation
	Functions
	Description
	Inputs and Outputs

	E6402A Local Oscillator Operation
	Functions
	Description
	E6402A Option 002 Module
	Inputs and Outputs

	E6403A 1000 to 3000 MHz Block Downconverter Operation
	Functions
	Description
	Inputs and Outputs

	E6404A IF Processor Operation
	Functions
	Description
	FFT-Based Measurements
	Stepped FFT Measurements
	Windowing
	FFT Resolution Bandwidth Range (Search Mode)
	FFT Resolution Bandwidths <5 kHz (Search Mode)
	FFT Resolution Bandwidths for DDC IF Pan Windows
	Improved Sensitivity Using FFTs
	Inputs and Outputs

	5. Specifications
	Definition of Terms
	Frequency-Related Specifications
	Amplitude-Related Specifications
	IF (Intermediate Frequency) Processing
	Physical Characteristics
	General Information
	Environmental Information
	VXI Information
	Regulatory Information

	6. Programming Command Reference
	Overview
	Driver Architecture
	Capability Classes
	Application Functions

	Return Values
	Special Values

	Command Lists
	Pointers to Memory Addresses

	Index

